Han Lu, Baodeng Chen, Xuejun Lai, Hongqiang Li, Xingrong Zeng
{"title":"用于人体运动检测的多孔还原氧化石墨烯@多壁碳纳米管/聚二甲基硅氧烷压阻式压力传感器","authors":"Han Lu, Baodeng Chen, Xuejun Lai, Hongqiang Li, Xingrong Zeng","doi":"10.1016/j.mtnano.2024.100512","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of wearable electronic, smart robot and health monitoring, there is a growing focus on flexible piezoresistive pressure sensors. Herein, a new strategy is proposed to prepare flexible piezoresistive pressure sensor with porous polydimethylsiloxane (PDMS) sponge as matrix and reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) for the construction of dual-conductive network. The sensor exhibited excellent overall sensing performances (pressure detection range of 0–200 kPa, sensitivity of 1.62 kPa<sup>−1</sup> in 0–29 kPa and 0.41 kPa<sup>−1</sup> in 29–65 kPa, response/recovery time of 61/40 ms and 22,000 loading-unloading cycles at 0–15 % compressive strain). Meanwhile, the sensor was able to normally work in the range of 30–100 °C and affected little by temperature. In addition, the sensor was successfully applied for detecting various human motions as well as music recognition and identification. The piezoresistive pressure sensor has great application prospect in wearable devices, health monitoring, and human-machine interaction.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100512"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous reduced graphene oxide@multi-walled carbon nanotubes/polydimethylsiloxane piezoresistive pressure sensor for human motion detection\",\"authors\":\"Han Lu, Baodeng Chen, Xuejun Lai, Hongqiang Li, Xingrong Zeng\",\"doi\":\"10.1016/j.mtnano.2024.100512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of wearable electronic, smart robot and health monitoring, there is a growing focus on flexible piezoresistive pressure sensors. Herein, a new strategy is proposed to prepare flexible piezoresistive pressure sensor with porous polydimethylsiloxane (PDMS) sponge as matrix and reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) for the construction of dual-conductive network. The sensor exhibited excellent overall sensing performances (pressure detection range of 0–200 kPa, sensitivity of 1.62 kPa<sup>−1</sup> in 0–29 kPa and 0.41 kPa<sup>−1</sup> in 29–65 kPa, response/recovery time of 61/40 ms and 22,000 loading-unloading cycles at 0–15 % compressive strain). Meanwhile, the sensor was able to normally work in the range of 30–100 °C and affected little by temperature. In addition, the sensor was successfully applied for detecting various human motions as well as music recognition and identification. The piezoresistive pressure sensor has great application prospect in wearable devices, health monitoring, and human-machine interaction.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100512\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000622\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000622","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Porous reduced graphene oxide@multi-walled carbon nanotubes/polydimethylsiloxane piezoresistive pressure sensor for human motion detection
With the rapid development of wearable electronic, smart robot and health monitoring, there is a growing focus on flexible piezoresistive pressure sensors. Herein, a new strategy is proposed to prepare flexible piezoresistive pressure sensor with porous polydimethylsiloxane (PDMS) sponge as matrix and reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) for the construction of dual-conductive network. The sensor exhibited excellent overall sensing performances (pressure detection range of 0–200 kPa, sensitivity of 1.62 kPa−1 in 0–29 kPa and 0.41 kPa−1 in 29–65 kPa, response/recovery time of 61/40 ms and 22,000 loading-unloading cycles at 0–15 % compressive strain). Meanwhile, the sensor was able to normally work in the range of 30–100 °C and affected little by temperature. In addition, the sensor was successfully applied for detecting various human motions as well as music recognition and identification. The piezoresistive pressure sensor has great application prospect in wearable devices, health monitoring, and human-machine interaction.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites