评估高分辨率循环离子迁移率分离中基于质量分布的同位素偏移的可加性

IF 1.6 3区 化学 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
{"title":"评估高分辨率循环离子迁移率分离中基于质量分布的同位素偏移的可加性","authors":"","doi":"10.1016/j.ijms.2024.117328","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS) have enabled the separation of isotopologues and isotopomers based on their mass distribution-based isotopic shifts (i.e., changes in center of mass and moments of inertia). To better understand the fundamental nature of these isotopic shifts, we investigated whether they were additive in nature by introducing varying isotopic substitutions (e.g., <sup>13</sup>C, <sup>2</sup>H/D, and <sup>81</sup>Br) through either hydrogen deuterium exchange or permethylation. From there, we measured the relative arrival times between light and heavy isotopologues with high-resolution cyclic ion mobility separations. Globally, we observed that the isotopic shifts were approximately additive in nature regardless of the molecule system or specific isomer studied. Furthermore, we discovered that additivity occurs in the isotopic shifts irrespective of the absolute shift, potentially indicating this observation may be more global in nature. We believe that our findings will serve to better understand the fundamental nature of mass distribution-based isotopic shifts and will inform theoretical ion mobility calculations in the future.</p></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the additivity of mass distribution-based isotopic shifts in high-resolution cyclic ion mobility separations\",\"authors\":\"\",\"doi\":\"10.1016/j.ijms.2024.117328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS) have enabled the separation of isotopologues and isotopomers based on their mass distribution-based isotopic shifts (i.e., changes in center of mass and moments of inertia). To better understand the fundamental nature of these isotopic shifts, we investigated whether they were additive in nature by introducing varying isotopic substitutions (e.g., <sup>13</sup>C, <sup>2</sup>H/D, and <sup>81</sup>Br) through either hydrogen deuterium exchange or permethylation. From there, we measured the relative arrival times between light and heavy isotopologues with high-resolution cyclic ion mobility separations. Globally, we observed that the isotopic shifts were approximately additive in nature regardless of the molecule system or specific isomer studied. Furthermore, we discovered that additivity occurs in the isotopic shifts irrespective of the absolute shift, potentially indicating this observation may be more global in nature. We believe that our findings will serve to better understand the fundamental nature of mass distribution-based isotopic shifts and will inform theoretical ion mobility calculations in the future.</p></div>\",\"PeriodicalId\":338,\"journal\":{\"name\":\"International Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387380624001398\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624001398","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率离子迁移谱-质谱分析法(IMS-MS)的最新进展,使我们能够根据基于质量分布的同位素位移(即质心和惯性矩的变化)来分离同位素和同素异形体。为了更好地了解这些同位素位移的基本性质,我们通过氢氘交换或过甲基化引入不同的同位素置换(如 13C、2H/D 和 81Br)来研究它们是否具有相加性。在此基础上,我们利用高分辨率循环离子迁移率分离法测量了轻同位素和重同位素之间的相对到达时间。总体而言,我们观察到,无论研究的分子体系或具体异构体如何,同位素位移都具有近似相加的性质。此外,我们还发现,无论绝对位移如何,同位素位移都具有相加性,这可能表明这一观察结果更具有全球性。我们相信,我们的发现将有助于更好地理解基于质量分布的同位素位移的基本性质,并为今后的理论离子迁移率计算提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing the additivity of mass distribution-based isotopic shifts in high-resolution cyclic ion mobility separations

Assessing the additivity of mass distribution-based isotopic shifts in high-resolution cyclic ion mobility separations

Recent advancements in high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS) have enabled the separation of isotopologues and isotopomers based on their mass distribution-based isotopic shifts (i.e., changes in center of mass and moments of inertia). To better understand the fundamental nature of these isotopic shifts, we investigated whether they were additive in nature by introducing varying isotopic substitutions (e.g., 13C, 2H/D, and 81Br) through either hydrogen deuterium exchange or permethylation. From there, we measured the relative arrival times between light and heavy isotopologues with high-resolution cyclic ion mobility separations. Globally, we observed that the isotopic shifts were approximately additive in nature regardless of the molecule system or specific isomer studied. Furthermore, we discovered that additivity occurs in the isotopic shifts irrespective of the absolute shift, potentially indicating this observation may be more global in nature. We believe that our findings will serve to better understand the fundamental nature of mass distribution-based isotopic shifts and will inform theoretical ion mobility calculations in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
145
审稿时长
71 days
期刊介绍: The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics. Papers, in which standard mass spectrometry techniques are used for analysis will not be considered. IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信