Sandiswa Figlan , Tsepiso Hlongoane , Carlos Bainotti , Pablo Campos , Leonardo Vanzetti , Gabriela Edith Tranquilli , Toi John Tsilo
{"title":"面包小麦栽培品种 Popo 在南非和阿根廷环境中具有幼苗和成株抗叶锈病的 QTLs","authors":"Sandiswa Figlan , Tsepiso Hlongoane , Carlos Bainotti , Pablo Campos , Leonardo Vanzetti , Gabriela Edith Tranquilli , Toi John Tsilo","doi":"10.1016/j.stress.2024.100570","DOIUrl":null,"url":null,"abstract":"<div><p>Leaf rust, caused by the fungus <em>Puccinia triticina</em> Eriks (<em>Pt</em>), is a destructive disease affecting wheat (<em>Triticum aestivum</em> L.) production in many countries, and a serious threat to food security. As a result, several breeding programs have included leaf rust resistance as an important trait. The discovery and identification of new resistance genes that could aid in incorporating durable or long-lasting leaf rust resistance into wheat is fundamental in these breeding programs. The present study aimed to identify quantitative trait loci (QTLs) for leaf rust resistance in 127 recombinant inbred lines (RIL) developed from the cross between the resistant wheat cultivar Popo and the susceptible cultivar Kariega. The RIL population and parental lines were phenotyped for leaf rust infection type and severity at seedling and adult plant stage, respectively. The former in the greenhouse (in Argentina) and the latter in multiple field test environments comprising 3 locations in South Africa (in Tygerhoek in the Western Cape Province during the 2014, 2015, 2017 and 2018 cropping seasons; Clarens during 2014, 2016 and 2017 cropping seasons and in Bethlehem in the Free State Province during 2017 cropping season) and in 1 location in Argentina (during the 2017 and 2018 cropping seasons in Marcos Juárez, Córdoba Province). The population was genotyped using genotyping-by-sequencing. A total of 12,080 silicoDArT and 2,669 SNP markers were used for QTL analysis. In total, 25 putative QTLs for resistance to leaf rust at seedling and adult plant stages were identified, including 5 QTLs for seedling and 20 QTLs for adult plant resistance (APR). Interestingly, both Popo and Kariega contributed with alleles for resistance. Significant loci for reducing leaf rust infection at seedling stage were designated <em>QLr.arc-1A, QLr.arc-2B, QLr.arc-5B, QLr.arc-6A</em> and <em>QLr.arc-6D</em>. Three minor QTLs derived from Popo designated as <em>QLr.arc-1B1, QLr.arc-2D</em> and <em>QLr.arc-3D</em> were also detected from the field tests, explaining 5–10%, 10–16% and 5–7% of the phenotypic variance, respectively. The identified QTLs and their closely linked silicoDArT and SNP-based markers can be used for fine mapping and candidate gene discovery in wheat breeding programs targeting durable leaf rust resistance.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100570"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002239/pdfft?md5=e41d7d7088a0529dfe81d93d54f846fc&pid=1-s2.0-S2667064X24002239-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bread wheat cultivar Popo harbors QTLs for seedling and adult plant resistance to leaf rust in South African and Argentine environments\",\"authors\":\"Sandiswa Figlan , Tsepiso Hlongoane , Carlos Bainotti , Pablo Campos , Leonardo Vanzetti , Gabriela Edith Tranquilli , Toi John Tsilo\",\"doi\":\"10.1016/j.stress.2024.100570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leaf rust, caused by the fungus <em>Puccinia triticina</em> Eriks (<em>Pt</em>), is a destructive disease affecting wheat (<em>Triticum aestivum</em> L.) production in many countries, and a serious threat to food security. As a result, several breeding programs have included leaf rust resistance as an important trait. The discovery and identification of new resistance genes that could aid in incorporating durable or long-lasting leaf rust resistance into wheat is fundamental in these breeding programs. The present study aimed to identify quantitative trait loci (QTLs) for leaf rust resistance in 127 recombinant inbred lines (RIL) developed from the cross between the resistant wheat cultivar Popo and the susceptible cultivar Kariega. The RIL population and parental lines were phenotyped for leaf rust infection type and severity at seedling and adult plant stage, respectively. The former in the greenhouse (in Argentina) and the latter in multiple field test environments comprising 3 locations in South Africa (in Tygerhoek in the Western Cape Province during the 2014, 2015, 2017 and 2018 cropping seasons; Clarens during 2014, 2016 and 2017 cropping seasons and in Bethlehem in the Free State Province during 2017 cropping season) and in 1 location in Argentina (during the 2017 and 2018 cropping seasons in Marcos Juárez, Córdoba Province). The population was genotyped using genotyping-by-sequencing. A total of 12,080 silicoDArT and 2,669 SNP markers were used for QTL analysis. In total, 25 putative QTLs for resistance to leaf rust at seedling and adult plant stages were identified, including 5 QTLs for seedling and 20 QTLs for adult plant resistance (APR). Interestingly, both Popo and Kariega contributed with alleles for resistance. Significant loci for reducing leaf rust infection at seedling stage were designated <em>QLr.arc-1A, QLr.arc-2B, QLr.arc-5B, QLr.arc-6A</em> and <em>QLr.arc-6D</em>. Three minor QTLs derived from Popo designated as <em>QLr.arc-1B1, QLr.arc-2D</em> and <em>QLr.arc-3D</em> were also detected from the field tests, explaining 5–10%, 10–16% and 5–7% of the phenotypic variance, respectively. The identified QTLs and their closely linked silicoDArT and SNP-based markers can be used for fine mapping and candidate gene discovery in wheat breeding programs targeting durable leaf rust resistance.</p></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100570\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002239/pdfft?md5=e41d7d7088a0529dfe81d93d54f846fc&pid=1-s2.0-S2667064X24002239-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Bread wheat cultivar Popo harbors QTLs for seedling and adult plant resistance to leaf rust in South African and Argentine environments
Leaf rust, caused by the fungus Puccinia triticina Eriks (Pt), is a destructive disease affecting wheat (Triticum aestivum L.) production in many countries, and a serious threat to food security. As a result, several breeding programs have included leaf rust resistance as an important trait. The discovery and identification of new resistance genes that could aid in incorporating durable or long-lasting leaf rust resistance into wheat is fundamental in these breeding programs. The present study aimed to identify quantitative trait loci (QTLs) for leaf rust resistance in 127 recombinant inbred lines (RIL) developed from the cross between the resistant wheat cultivar Popo and the susceptible cultivar Kariega. The RIL population and parental lines were phenotyped for leaf rust infection type and severity at seedling and adult plant stage, respectively. The former in the greenhouse (in Argentina) and the latter in multiple field test environments comprising 3 locations in South Africa (in Tygerhoek in the Western Cape Province during the 2014, 2015, 2017 and 2018 cropping seasons; Clarens during 2014, 2016 and 2017 cropping seasons and in Bethlehem in the Free State Province during 2017 cropping season) and in 1 location in Argentina (during the 2017 and 2018 cropping seasons in Marcos Juárez, Córdoba Province). The population was genotyped using genotyping-by-sequencing. A total of 12,080 silicoDArT and 2,669 SNP markers were used for QTL analysis. In total, 25 putative QTLs for resistance to leaf rust at seedling and adult plant stages were identified, including 5 QTLs for seedling and 20 QTLs for adult plant resistance (APR). Interestingly, both Popo and Kariega contributed with alleles for resistance. Significant loci for reducing leaf rust infection at seedling stage were designated QLr.arc-1A, QLr.arc-2B, QLr.arc-5B, QLr.arc-6A and QLr.arc-6D. Three minor QTLs derived from Popo designated as QLr.arc-1B1, QLr.arc-2D and QLr.arc-3D were also detected from the field tests, explaining 5–10%, 10–16% and 5–7% of the phenotypic variance, respectively. The identified QTLs and their closely linked silicoDArT and SNP-based markers can be used for fine mapping and candidate gene discovery in wheat breeding programs targeting durable leaf rust resistance.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.