{"title":"承受爆炸荷载的对接焊接板动态响应的实验和数值研究","authors":"","doi":"10.1016/j.ijimpeng.2024.105082","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental and numerical investigations on the small-size butt-welded plates subjected to air blast loads were conducted to highlight the effect of welded joints on the blast proof structures. The inherent characteristics of welded joints, including geometry, mechanical properties and welding residual stress were evaluated and discussed in the computation of blast loading. The geometry shape was assessed through macrographic of the welded joints. The distribution of mechanical and thermal physics property was determined through basic experiments using the specimens extracted from different zones of a welded joint. Welding residual stress was calculated in a thermo-mechanical coupled model. Conventional Weapons Effects Program (CONWEP) is more economic but limited compared with Arbitrary-Lagrangian–Eulerian (ALE) method. ALE and CONWEP methods were applied to simulate the air blast load applied on the plates. Effectiveness and efficiency of the methods were discussed. The results of the two programs could both coincide well with the experiment measurements. The models under six conditions were calculated to uncouple and discuss the effect of material property distribution and welding residual stress on the dynamic response of the welded structure. Permanent deflections were considered to assess the capacity of welded structures. Welding residual stress fields and the local weak materials are advantageous to the bending deformation. The phenomenological expressions of permanent deflection across thickness under different welding conditions were established based on simulation results. The effect of aspect ratio of the welded structures was also be discussed.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigations on dynamic response of butt-welded plates subjected to blast load\",\"authors\":\"\",\"doi\":\"10.1016/j.ijimpeng.2024.105082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental and numerical investigations on the small-size butt-welded plates subjected to air blast loads were conducted to highlight the effect of welded joints on the blast proof structures. The inherent characteristics of welded joints, including geometry, mechanical properties and welding residual stress were evaluated and discussed in the computation of blast loading. The geometry shape was assessed through macrographic of the welded joints. The distribution of mechanical and thermal physics property was determined through basic experiments using the specimens extracted from different zones of a welded joint. Welding residual stress was calculated in a thermo-mechanical coupled model. Conventional Weapons Effects Program (CONWEP) is more economic but limited compared with Arbitrary-Lagrangian–Eulerian (ALE) method. ALE and CONWEP methods were applied to simulate the air blast load applied on the plates. Effectiveness and efficiency of the methods were discussed. The results of the two programs could both coincide well with the experiment measurements. The models under six conditions were calculated to uncouple and discuss the effect of material property distribution and welding residual stress on the dynamic response of the welded structure. Permanent deflections were considered to assess the capacity of welded structures. Welding residual stress fields and the local weak materials are advantageous to the bending deformation. The phenomenological expressions of permanent deflection across thickness under different welding conditions were established based on simulation results. The effect of aspect ratio of the welded structures was also be discussed.</p></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002069\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002069","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and numerical investigations on dynamic response of butt-welded plates subjected to blast load
Experimental and numerical investigations on the small-size butt-welded plates subjected to air blast loads were conducted to highlight the effect of welded joints on the blast proof structures. The inherent characteristics of welded joints, including geometry, mechanical properties and welding residual stress were evaluated and discussed in the computation of blast loading. The geometry shape was assessed through macrographic of the welded joints. The distribution of mechanical and thermal physics property was determined through basic experiments using the specimens extracted from different zones of a welded joint. Welding residual stress was calculated in a thermo-mechanical coupled model. Conventional Weapons Effects Program (CONWEP) is more economic but limited compared with Arbitrary-Lagrangian–Eulerian (ALE) method. ALE and CONWEP methods were applied to simulate the air blast load applied on the plates. Effectiveness and efficiency of the methods were discussed. The results of the two programs could both coincide well with the experiment measurements. The models under six conditions were calculated to uncouple and discuss the effect of material property distribution and welding residual stress on the dynamic response of the welded structure. Permanent deflections were considered to assess the capacity of welded structures. Welding residual stress fields and the local weak materials are advantageous to the bending deformation. The phenomenological expressions of permanent deflection across thickness under different welding conditions were established based on simulation results. The effect of aspect ratio of the welded structures was also be discussed.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications