Yu Zhang , Haoling Luo , Haihui Li , Jiawen Wei , Wenjie Cao , Jia Jiang , Wei Lu , Xiong Zhang , Meifeng Liu , Bin Zhang
{"title":"通过 L-抗坏血酸同时优化 PEDOT:PSS 聚合物塞贝克系数和导电性的新策略","authors":"Yu Zhang , Haoling Luo , Haihui Li , Jiawen Wei , Wenjie Cao , Jia Jiang , Wei Lu , Xiong Zhang , Meifeng Liu , Bin Zhang","doi":"10.1016/j.synthmet.2024.117725","DOIUrl":null,"url":null,"abstract":"<div><p>PEDOT:PSS flexible thermoelectric materials are promising for future wearable continuous power support, but it remains challenging due to low power factor. Herein, we propose a “one-stone-two-birds” strategy using L-ascorbic acid as the reductant in synthesis of tellurium nanorods and separating agent in in-situ removing PSS chains. L-ascorbic acid reduces Te<sup>4+</sup> to Te, supplying inorganic thermoelectric materials with high Seebeck coefficient as fillers to significantly increase the Seebeck coefficient value of PEDOT:PSS. Meanwhile, L-ascorbic acid separates PSS chains from PEDOT chains, resulting in the increase of electrical conductivity at room temperature by ∼360 % due to structure transformation from benzoid structure to the quinoid structure in PEDOT. As a result, the power factor of optimal PEDOT:PSS with Te fillers and L-ascorbic acid treatment is improved significantly by ∼100 times as compared to that of pristine PEDOT:PSS. Finally, a prototype wearable thermoelectric generator was assembled by 18 legs of Te/PEDOT:PSS composites, which demonstrates a high power density of 2.3 μW·cm<sup>−2</sup> with good mechanical stability, flexibility and durability. The present study offers a new strategy for rational design of high-performance flexible thermoelectric materials from PEDOT:PSS.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117725"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new strategy to simultaneously optimize Seebeck coefficient and electrical conductivity of PEDOT:PSS polymer via L-ascorbic acid\",\"authors\":\"Yu Zhang , Haoling Luo , Haihui Li , Jiawen Wei , Wenjie Cao , Jia Jiang , Wei Lu , Xiong Zhang , Meifeng Liu , Bin Zhang\",\"doi\":\"10.1016/j.synthmet.2024.117725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>PEDOT:PSS flexible thermoelectric materials are promising for future wearable continuous power support, but it remains challenging due to low power factor. Herein, we propose a “one-stone-two-birds” strategy using L-ascorbic acid as the reductant in synthesis of tellurium nanorods and separating agent in in-situ removing PSS chains. L-ascorbic acid reduces Te<sup>4+</sup> to Te, supplying inorganic thermoelectric materials with high Seebeck coefficient as fillers to significantly increase the Seebeck coefficient value of PEDOT:PSS. Meanwhile, L-ascorbic acid separates PSS chains from PEDOT chains, resulting in the increase of electrical conductivity at room temperature by ∼360 % due to structure transformation from benzoid structure to the quinoid structure in PEDOT. As a result, the power factor of optimal PEDOT:PSS with Te fillers and L-ascorbic acid treatment is improved significantly by ∼100 times as compared to that of pristine PEDOT:PSS. Finally, a prototype wearable thermoelectric generator was assembled by 18 legs of Te/PEDOT:PSS composites, which demonstrates a high power density of 2.3 μW·cm<sup>−2</sup> with good mechanical stability, flexibility and durability. The present study offers a new strategy for rational design of high-performance flexible thermoelectric materials from PEDOT:PSS.</p></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"308 \",\"pages\":\"Article 117725\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924001875\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001875","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A new strategy to simultaneously optimize Seebeck coefficient and electrical conductivity of PEDOT:PSS polymer via L-ascorbic acid
PEDOT:PSS flexible thermoelectric materials are promising for future wearable continuous power support, but it remains challenging due to low power factor. Herein, we propose a “one-stone-two-birds” strategy using L-ascorbic acid as the reductant in synthesis of tellurium nanorods and separating agent in in-situ removing PSS chains. L-ascorbic acid reduces Te4+ to Te, supplying inorganic thermoelectric materials with high Seebeck coefficient as fillers to significantly increase the Seebeck coefficient value of PEDOT:PSS. Meanwhile, L-ascorbic acid separates PSS chains from PEDOT chains, resulting in the increase of electrical conductivity at room temperature by ∼360 % due to structure transformation from benzoid structure to the quinoid structure in PEDOT. As a result, the power factor of optimal PEDOT:PSS with Te fillers and L-ascorbic acid treatment is improved significantly by ∼100 times as compared to that of pristine PEDOT:PSS. Finally, a prototype wearable thermoelectric generator was assembled by 18 legs of Te/PEDOT:PSS composites, which demonstrates a high power density of 2.3 μW·cm−2 with good mechanical stability, flexibility and durability. The present study offers a new strategy for rational design of high-performance flexible thermoelectric materials from PEDOT:PSS.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.