基于 ANN 和 Kriging 算法的短期极端响应预测代用模型

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
{"title":"基于 ANN 和 Kriging 算法的短期极端响应预测代用模型","authors":"","doi":"10.1016/j.apor.2024.104196","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulation is a common method for calculating the short-term extreme response of floating offshore wind turbines (FOWTs). However, it requires significant computational resources. This study presents a dynamic response database for a 5MW semi-submersible FOWT under complex environmental conditions, including wind speed, effective wave height, and wave spectral peak period, using a numerical model. The peak over threshold (POT) method can be used to obtain the parametric database of short-term extreme responses, which includes the short-term extreme response distribution parameters for four responses: float surge, mooring tension, outward bending moment at the leaf root surface (OoPBM) and tower base pitching moment (TBPM). And the parameter database is applied to train models such as the Genetic Algorithm optimization Back Propagation neural network (GA-BP) and Kriging algorithm models. The research indicates that a correlation can be established between environmental conditions and short-term extreme response parameters using two algorithms. The accuracy of surrogate model prediction for some parameters can be improved by grouping the data based on wind speed and training separately. Additionally, selecting the appropriate surrogate model for each parameter separately can improve the accuracy of short-term extreme response prediction.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The surrogate model for short-term extreme response prediction based on ANN and Kriging algorithm\",\"authors\":\"\",\"doi\":\"10.1016/j.apor.2024.104196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical simulation is a common method for calculating the short-term extreme response of floating offshore wind turbines (FOWTs). However, it requires significant computational resources. This study presents a dynamic response database for a 5MW semi-submersible FOWT under complex environmental conditions, including wind speed, effective wave height, and wave spectral peak period, using a numerical model. The peak over threshold (POT) method can be used to obtain the parametric database of short-term extreme responses, which includes the short-term extreme response distribution parameters for four responses: float surge, mooring tension, outward bending moment at the leaf root surface (OoPBM) and tower base pitching moment (TBPM). And the parameter database is applied to train models such as the Genetic Algorithm optimization Back Propagation neural network (GA-BP) and Kriging algorithm models. The research indicates that a correlation can be established between environmental conditions and short-term extreme response parameters using two algorithms. The accuracy of surrogate model prediction for some parameters can be improved by grouping the data based on wind speed and training separately. Additionally, selecting the appropriate surrogate model for each parameter separately can improve the accuracy of short-term extreme response prediction.</p></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003171\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

数值模拟是计算浮式海上风力涡轮机(FOWT)短期极端响应的常用方法。然而,它需要大量的计算资源。本研究利用数值模型为 5 兆瓦半潜式 FOWT 提供了复杂环境条件下的动态响应数据库,包括风速、有效波高和波谱峰值周期。利用峰值超过阈值(POT)方法可获得短期极端响应参数数据库,其中包括浮筒浪涌、系泊张力、叶根面外弯矩(OoPBM)和塔基俯仰力矩(TBPM)四种响应的短期极端响应分布参数。并将参数数据库用于训练遗传算法优化反向传播神经网络(GA-BP)和克里金算法模型等模型。研究表明,使用两种算法可以建立环境条件与短期极端响应参数之间的相关性。根据风速和训练分别对数据进行分组,可以提高代用模型对某些参数预测的准确性。此外,为每个参数分别选择合适的代用模型也能提高短期极端响应预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The surrogate model for short-term extreme response prediction based on ANN and Kriging algorithm

Numerical simulation is a common method for calculating the short-term extreme response of floating offshore wind turbines (FOWTs). However, it requires significant computational resources. This study presents a dynamic response database for a 5MW semi-submersible FOWT under complex environmental conditions, including wind speed, effective wave height, and wave spectral peak period, using a numerical model. The peak over threshold (POT) method can be used to obtain the parametric database of short-term extreme responses, which includes the short-term extreme response distribution parameters for four responses: float surge, mooring tension, outward bending moment at the leaf root surface (OoPBM) and tower base pitching moment (TBPM). And the parameter database is applied to train models such as the Genetic Algorithm optimization Back Propagation neural network (GA-BP) and Kriging algorithm models. The research indicates that a correlation can be established between environmental conditions and short-term extreme response parameters using two algorithms. The accuracy of surrogate model prediction for some parameters can be improved by grouping the data based on wind speed and training separately. Additionally, selecting the appropriate surrogate model for each parameter separately can improve the accuracy of short-term extreme response prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信