从时间杀伤曲线了解细菌抗菌异质性的 "出生-死亡模型"。

IF 1.9 4区 数学 Q2 BIOLOGY
Nerea Martínez-López, Carlos Vilas, Míriam R. García
{"title":"从时间杀伤曲线了解细菌抗菌异质性的 \"出生-死亡模型\"。","authors":"Nerea Martínez-López,&nbsp;Carlos Vilas,&nbsp;Míriam R. García","doi":"10.1016/j.mbs.2024.109278","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"376 ","pages":"Article 109278"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002555642400138X/pdfft?md5=b477bf62a30c550df9d349f4c81d30f9&pid=1-s2.0-S002555642400138X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves\",\"authors\":\"Nerea Martínez-López,&nbsp;Carlos Vilas,&nbsp;Míriam R. García\",\"doi\":\"10.1016/j.mbs.2024.109278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"376 \",\"pages\":\"Article 109278\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002555642400138X/pdfft?md5=b477bf62a30c550df9d349f4c81d30f9&pid=1-s2.0-S002555642400138X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002555642400138X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400138X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌药异抗性是指在同一细菌分离物中存在不同的亚群,它们对抗菌药的反应各不相同,因此与主群相比,它们表现出较低的敏感性。尽管人们普遍认为异抗性对抗菌治疗的结果起着至关重要的作用,但考虑到细菌异抗性的预测性抗菌药耐药性(AMR)模型仍然很少,需要随着异抗性测量技术的标准化和从数据中得出一致的结论而不断完善。在这项工作中,我们提出了细菌异抗性的多变量出生-死亡(BD)模型,并详细分析了其特性。我们考虑了种群动态中的随机性,因为异抗性的特点通常是低易感亚群的初始频率较低,这些亚群介导着 AMR 的传播,并可能导致治疗失败。我们还讨论了异抗性模型在实际应用中的实用性以及在现实条件下的校准问题,证明可以通过时杀数据推断模型参数和异抗性分布,即只测量细胞总数,而不进行任何异抗性测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves

Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信