聚苯乙烯纳米塑料大大促进了大口鲈鱼匐茎病毒对宿主细胞的感染。

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-23 DOI:10.1016/j.jhazmat.2024.135597
Linyong Zhi, Guimei Zhang, Zhen Li, Fang Chen, Qiwei Qin, Youhua Huang, Xiaohong Huang, Jun Wang
{"title":"聚苯乙烯纳米塑料大大促进了大口鲈鱼匐茎病毒对宿主细胞的感染。","authors":"Linyong Zhi, Guimei Zhang, Zhen Li, Fang Chen, Qiwei Qin, Youhua Huang, Xiaohong Huang, Jun Wang","doi":"10.1016/j.jhazmat.2024.135597","DOIUrl":null,"url":null,"abstract":"<p><p>Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 μg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135597"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polystyrene nanoplastics significantly facilitate largemouth bass ranavirus infection of host cells.\",\"authors\":\"Linyong Zhi, Guimei Zhang, Zhen Li, Fang Chen, Qiwei Qin, Youhua Huang, Xiaohong Huang, Jun Wang\",\"doi\":\"10.1016/j.jhazmat.2024.135597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 μg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型污染物纳米塑料(NPs)广泛分布于水生环境中,可能对水生生物的健康构成威胁。值得注意的是,纳米塑料对水生动物病毒性疾病发生的影响在很大程度上仍不确定。本研究调查了聚苯乙烯纳米塑料(PS-NPs)对大口鲈鱼匐茎病毒(LMBV)感染的 MsF 细胞的影响。MsF 细胞对 PS-NPs 的吸收具有时间和剂量依赖性,当接触浓度为 500 μg/mL 时,PS-NPs 会显著影响细胞活力。Western 印迹和 qPCR 检测表明,暴露于 PS-NPs 会加速 LMBV 在 MsF 细胞中的复制。PS-NPs 与 LMBV 协同作用,破坏细胞的抗氧化系统,ROS 生成增加和抗氧化相关基因的 mRNA 水平降低就是证明。此外,PS-NPs 还会加剧 LMBV 诱导的炎症反应,这表现在炎症相关因子的表达紊乱。此外,我们的研究结果表明,PS-NPs 通过抑制与 cGAS-STING 信号通路相关的分子的表达来减少 IFN 的产生,从而促进病毒的复制。总之,我们的研究结果表明了 NPs 对淡水鱼病毒引起的传染性疾病的潜在威胁,并为鱼类疾病的预防和控制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polystyrene nanoplastics significantly facilitate largemouth bass ranavirus infection of host cells.

Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 μg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信