Hong Zheng, Xi Zhang, Chen Li, Die Wang, Yuying Shen, Jiahui Lu, Liangcai Zhao, Xiaokun Li, Hongchang Gao
{"title":"BCAA 介导的微生物群-肝脏-心脏串扰通过 FGF21 调节糖尿病心肌病。","authors":"Hong Zheng, Xi Zhang, Chen Li, Die Wang, Yuying Shen, Jiahui Lu, Liangcai Zhao, Xiaokun Li, Hongchang Gao","doi":"10.1186/s40168-024-01872-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive.</p><p><strong>Results: </strong>We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown.</p><p><strong>Conclusions: </strong>Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"157"},"PeriodicalIF":13.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344321/pdf/","citationCount":"0","resultStr":"{\"title\":\"BCAA mediated microbiota-liver-heart crosstalk regulates diabetic cardiomyopathy via FGF21.\",\"authors\":\"Hong Zheng, Xi Zhang, Chen Li, Die Wang, Yuying Shen, Jiahui Lu, Liangcai Zhao, Xiaokun Li, Hongchang Gao\",\"doi\":\"10.1186/s40168-024-01872-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive.</p><p><strong>Results: </strong>We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown.</p><p><strong>Conclusions: </strong>Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"12 1\",\"pages\":\"157\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01872-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01872-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
BCAA mediated microbiota-liver-heart crosstalk regulates diabetic cardiomyopathy via FGF21.
Background: Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive.
Results: We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown.
Conclusions: Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.