{"title":"柠檬锌指蛋白 ClSUP 通过与 ClDOF3.4 相互作用,诱导活性氧积累并抑制柑橘黄脉清病毒感染。","authors":"Ping Liao, Ting Zeng, Yuan Chen, Dong-Dong Ding, Chang-Yong Zhou, Yan Zhou","doi":"10.1093/jxb/erae361","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus yellow vein-clearing virus (Potexvirus citriflavivenae; CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrated that ZFPs ClSUP and ClDOF3.4 enhanced citrus defense responses against CYVCV in Eureka lemon (Citrus limon 'Eureka'). ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibited its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacted with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 significantly decreased the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"7300-7316"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lemon zinc finger protein ClSUP induces accumulation of reactive oxygen species and inhibits citrus yellow vein-clearing virus infection via interactions with ClDOF3.4.\",\"authors\":\"Ping Liao, Ting Zeng, Yuan Chen, Dong-Dong Ding, Chang-Yong Zhou, Yan Zhou\",\"doi\":\"10.1093/jxb/erae361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Citrus yellow vein-clearing virus (Potexvirus citriflavivenae; CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrated that ZFPs ClSUP and ClDOF3.4 enhanced citrus defense responses against CYVCV in Eureka lemon (Citrus limon 'Eureka'). ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibited its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacted with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 significantly decreased the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"7300-7316\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae361\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae361","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Lemon zinc finger protein ClSUP induces accumulation of reactive oxygen species and inhibits citrus yellow vein-clearing virus infection via interactions with ClDOF3.4.
Citrus yellow vein-clearing virus (Potexvirus citriflavivenae; CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrated that ZFPs ClSUP and ClDOF3.4 enhanced citrus defense responses against CYVCV in Eureka lemon (Citrus limon 'Eureka'). ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibited its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacted with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 significantly decreased the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.