{"title":"蒽和菲在水中的荧光和光物理特性。","authors":"Muhammad Farooq Saleem Khan, Mona Akbar, Jing Wu","doi":"10.1007/s10895-024-03905-4","DOIUrl":null,"url":null,"abstract":"<p><p>Polyaromatic hydrocarbons (PAHs) are widely spread pollutants in the environment, including soil and water. Anthracene (anth) and phenanthrene (phen) pose severe health impacts on human lives due to their carcinogenic nature by increasing cancer risk to the skin, lungs, and bladder. Fluorescence spectroscopy is a promising , efficient and straightforward tool for characterizing these trace PAHs in water. Therefore, the current work provides a detailed insight into the fluorescence properties of anth and phen in water. The fluorescence EEMs (excitation-emission matrices) of anth showed emissions at 380 nm, 400 nm, and 425 nm with single excitation at 250 nm, whereas phen showed two emissions < 380 nm, at 350 nm and 365 with single excitation at 250 nm. Then the theoretical EX/EM wavelengths were calculated by DFT and CIS-B3LYP for these compounds in water. The environmental effect of pH variation on fluorescence EEM shows a significant difference in fluorescence intensity without changing in peak locations, with highest fluorescence intensity at neutral pH than acidic and alkaline. Furthermore, the theoretical pH effect was described for the first time by simulating the protonated (+ 1), deprotonated (-1) and neutral molecules in water at the DFT level of theory. The variation in simulated oscillator strengths was similar in trend with the experimental fluorescence intensity of these compounds. The HOMO-LUMO were calculated to obtain the energy gap, molecular softness, molecular hardness, electronic potential and electrophilicity of anth and phen. To find the fluorophore contribution, the fluorescence of homogeneous mixture of both isomers was analyzed, which showed an enhanced fluorescence intensity of anth by 12-20%, whereas a decrease of 9-14% was observed in phen. This study describes that the fluorescence technique could be a fast and easy method to distinguish and identify PAHs isomers (anth and phen) in water.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescence and Photophysical Properties of Anthracene and Phenanthrene in Water.\",\"authors\":\"Muhammad Farooq Saleem Khan, Mona Akbar, Jing Wu\",\"doi\":\"10.1007/s10895-024-03905-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyaromatic hydrocarbons (PAHs) are widely spread pollutants in the environment, including soil and water. Anthracene (anth) and phenanthrene (phen) pose severe health impacts on human lives due to their carcinogenic nature by increasing cancer risk to the skin, lungs, and bladder. Fluorescence spectroscopy is a promising , efficient and straightforward tool for characterizing these trace PAHs in water. Therefore, the current work provides a detailed insight into the fluorescence properties of anth and phen in water. The fluorescence EEMs (excitation-emission matrices) of anth showed emissions at 380 nm, 400 nm, and 425 nm with single excitation at 250 nm, whereas phen showed two emissions < 380 nm, at 350 nm and 365 with single excitation at 250 nm. Then the theoretical EX/EM wavelengths were calculated by DFT and CIS-B3LYP for these compounds in water. The environmental effect of pH variation on fluorescence EEM shows a significant difference in fluorescence intensity without changing in peak locations, with highest fluorescence intensity at neutral pH than acidic and alkaline. Furthermore, the theoretical pH effect was described for the first time by simulating the protonated (+ 1), deprotonated (-1) and neutral molecules in water at the DFT level of theory. The variation in simulated oscillator strengths was similar in trend with the experimental fluorescence intensity of these compounds. The HOMO-LUMO were calculated to obtain the energy gap, molecular softness, molecular hardness, electronic potential and electrophilicity of anth and phen. To find the fluorophore contribution, the fluorescence of homogeneous mixture of both isomers was analyzed, which showed an enhanced fluorescence intensity of anth by 12-20%, whereas a decrease of 9-14% was observed in phen. This study describes that the fluorescence technique could be a fast and easy method to distinguish and identify PAHs isomers (anth and phen) in water.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03905-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03905-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fluorescence and Photophysical Properties of Anthracene and Phenanthrene in Water.
Polyaromatic hydrocarbons (PAHs) are widely spread pollutants in the environment, including soil and water. Anthracene (anth) and phenanthrene (phen) pose severe health impacts on human lives due to their carcinogenic nature by increasing cancer risk to the skin, lungs, and bladder. Fluorescence spectroscopy is a promising , efficient and straightforward tool for characterizing these trace PAHs in water. Therefore, the current work provides a detailed insight into the fluorescence properties of anth and phen in water. The fluorescence EEMs (excitation-emission matrices) of anth showed emissions at 380 nm, 400 nm, and 425 nm with single excitation at 250 nm, whereas phen showed two emissions < 380 nm, at 350 nm and 365 with single excitation at 250 nm. Then the theoretical EX/EM wavelengths were calculated by DFT and CIS-B3LYP for these compounds in water. The environmental effect of pH variation on fluorescence EEM shows a significant difference in fluorescence intensity without changing in peak locations, with highest fluorescence intensity at neutral pH than acidic and alkaline. Furthermore, the theoretical pH effect was described for the first time by simulating the protonated (+ 1), deprotonated (-1) and neutral molecules in water at the DFT level of theory. The variation in simulated oscillator strengths was similar in trend with the experimental fluorescence intensity of these compounds. The HOMO-LUMO were calculated to obtain the energy gap, molecular softness, molecular hardness, electronic potential and electrophilicity of anth and phen. To find the fluorophore contribution, the fluorescence of homogeneous mixture of both isomers was analyzed, which showed an enhanced fluorescence intensity of anth by 12-20%, whereas a decrease of 9-14% was observed in phen. This study describes that the fluorescence technique could be a fast and easy method to distinguish and identify PAHs isomers (anth and phen) in water.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.