{"title":"用于骨组织工程的三维多孔聚己内酯/壳聚糖/生物活性玻璃支架。","authors":"Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Nagarajan Selvamurugan, Prabaharan Mani","doi":"10.1080/09205063.2024.2391218","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, <i>in vitro</i> biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2829-2844"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.\",\"authors\":\"Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Nagarajan Selvamurugan, Prabaharan Mani\",\"doi\":\"10.1080/09205063.2024.2391218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, <i>in vitro</i> biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"2829-2844\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2391218\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2391218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.
Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, in vitro biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.