Aslihan Ambeskovic, Matthew N McCall, Jonathan Woodsmith, Hartmut Juhl, Hartmut Land
{"title":"基于外显子跳越的结直肠癌亚型分析","authors":"Aslihan Ambeskovic, Matthew N McCall, Jonathan Woodsmith, Hartmut Juhl, Hartmut Land","doi":"10.1053/j.gastro.2024.08.016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs. Alternative splicing, which strongly contributes to transcriptome diversity, has rarely been used for tissue type classification. Here, we present an AS-based CRC subtyping framework sensitive to differential exon use that can be adapted for clinical application.</p><p><strong>Methods: </strong>Unsupervised clustering was used to measure the strength of association between different categories of alternative splicing and CMSs. To build a classifier, the ground truth for CMS labels was derived from expression data quantified at the gene level. Feature selection was achieved through bootstrapping and L1-penalized estimation. The resulting feature space was used to construct a subtype prediction framework applicable to single and multiple samples. The performance of the models was evaluated on unseen CRCs from 2 independent sources (Indivumed, n = 129; The Cancer Genome Atlas, n = 99).</p><p><strong>Results: </strong>We developed a CRC subtype identifier based on 29 exon-skipping events that accurately classifies unseen tumors and enables more precise differentiation of subtypes characterized by distinct biological and prognostic features as compared to classifiers based on gene expression.</p><p><strong>Conclusions: </strong>Here, we demonstrate that a small number of exon-skipping events can reliably classify CRC subtypes using individual patient specimens in a manner suitable to clinical application.</p>","PeriodicalId":12590,"journal":{"name":"Gastroenterology","volume":" ","pages":"1358-1370.e12"},"PeriodicalIF":25.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exon-Skipping-Based Subtyping of Colorectal Cancers.\",\"authors\":\"Aslihan Ambeskovic, Matthew N McCall, Jonathan Woodsmith, Hartmut Juhl, Hartmut Land\",\"doi\":\"10.1053/j.gastro.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background & aims: </strong>The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs. Alternative splicing, which strongly contributes to transcriptome diversity, has rarely been used for tissue type classification. Here, we present an AS-based CRC subtyping framework sensitive to differential exon use that can be adapted for clinical application.</p><p><strong>Methods: </strong>Unsupervised clustering was used to measure the strength of association between different categories of alternative splicing and CMSs. To build a classifier, the ground truth for CMS labels was derived from expression data quantified at the gene level. Feature selection was achieved through bootstrapping and L1-penalized estimation. The resulting feature space was used to construct a subtype prediction framework applicable to single and multiple samples. The performance of the models was evaluated on unseen CRCs from 2 independent sources (Indivumed, n = 129; The Cancer Genome Atlas, n = 99).</p><p><strong>Results: </strong>We developed a CRC subtype identifier based on 29 exon-skipping events that accurately classifies unseen tumors and enables more precise differentiation of subtypes characterized by distinct biological and prognostic features as compared to classifiers based on gene expression.</p><p><strong>Conclusions: </strong>Here, we demonstrate that a small number of exon-skipping events can reliably classify CRC subtypes using individual patient specimens in a manner suitable to clinical application.</p>\",\"PeriodicalId\":12590,\"journal\":{\"name\":\"Gastroenterology\",\"volume\":\" \",\"pages\":\"1358-1370.e12\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1053/j.gastro.2024.08.016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.gastro.2024.08.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Exon-Skipping-Based Subtyping of Colorectal Cancers.
Background & aims: The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs. Alternative splicing, which strongly contributes to transcriptome diversity, has rarely been used for tissue type classification. Here, we present an AS-based CRC subtyping framework sensitive to differential exon use that can be adapted for clinical application.
Methods: Unsupervised clustering was used to measure the strength of association between different categories of alternative splicing and CMSs. To build a classifier, the ground truth for CMS labels was derived from expression data quantified at the gene level. Feature selection was achieved through bootstrapping and L1-penalized estimation. The resulting feature space was used to construct a subtype prediction framework applicable to single and multiple samples. The performance of the models was evaluated on unseen CRCs from 2 independent sources (Indivumed, n = 129; The Cancer Genome Atlas, n = 99).
Results: We developed a CRC subtype identifier based on 29 exon-skipping events that accurately classifies unseen tumors and enables more precise differentiation of subtypes characterized by distinct biological and prognostic features as compared to classifiers based on gene expression.
Conclusions: Here, we demonstrate that a small number of exon-skipping events can reliably classify CRC subtypes using individual patient specimens in a manner suitable to clinical application.
期刊介绍:
Gastroenterology is the most prominent journal in the field of gastrointestinal disease. It is the flagship journal of the American Gastroenterological Association and delivers authoritative coverage of clinical, translational, and basic studies of all aspects of the digestive system, including the liver and pancreas, as well as nutrition.
Some regular features of Gastroenterology include original research studies by leading authorities, comprehensive reviews and perspectives on important topics in adult and pediatric gastroenterology and hepatology. The journal also includes features such as editorials, correspondence, and commentaries, as well as special sections like "Mentoring, Education and Training Corner," "Diversity, Equity and Inclusion in GI," "Gastro Digest," "Gastro Curbside Consult," and "Gastro Grand Rounds."
Gastroenterology also provides digital media materials such as videos and "GI Rapid Reel" animations. It is abstracted and indexed in various databases including Scopus, Biological Abstracts, Current Contents, Embase, Nutrition Abstracts, Chemical Abstracts, Current Awareness in Biological Sciences, PubMed/Medline, and the Science Citation Index.