{"title":"CT 辐射剂量和碘化造影剂用量调查:一项国际多中心研究。","authors":"Lina Karout, Mannudeep K Kalra","doi":"10.1007/s00330-024-11017-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the relationship between intravenous iodinated contrast media (ICM) administration usage and radiation doses for contrast-enhanced (CE) CT of head, chest, and abdomen-pelvis (AP) in international, multicenter settings.</p><p><strong>Methods: </strong>Our international (n = 16 countries), multicenter (n = 43 sites), and cross-sectional (ConRad) study had two parts. Part 1: Redcap survey with questions on information related to CT and ICM manufacturer/brand and respective protocols. Part 2: Information on 3,258 patients (18-96 years; M:F 1654:1604) who underwent CECT for a routine head (n = 456), chest (n = 528), AP (n = 599), head CT angiography (n = 539), pulmonary embolism (n = 599), and liver CT examinations (n = 537) at 43 sites across five continents. The following information was recorded: hospital name, patient age, gender, body mass index [BMI], clinical indications, scan parameters (number of scan phases, kV), IV-contrast information (concentration, volume, flow rate, and delay), and dose indices (CTDIvol and DLP).</p><p><strong>Results: </strong>Most routine chest (58.4%) and AP (68.7%) CECT exams were performed with 2-4 scan phases with fixed scan delay (chest 71.4%; AP 79.8%, liver CECT 50.7%) following ICM administration. Most sites did not change kV across different patients and scan phases; most CECT protocols were performed at 120-140 kV (83%, 1979/2685). There were no significant differences between radiation doses for non-contrast (CTDIvol 24 [16-30] mGy; DLP 633 [414-702] mGy·cm) and post-contrast phases (22 [19-27] mGy; 648 [392-694] mGy·cm) (p = 0.142). Sites that used bolus tracking for chest and AP CECT had lower CTDIvol than sites with fixed scan delays (p < 0.001). There was no correlation between BMI and CTDIvol (r<sup>2</sup> ≤ - 0.1 to 0.1, p = 0.931).</p><p><strong>Conclusion: </strong>Our study demonstrates up to ten-fold variability in ICM injection protocols and radiation doses across different CT protocols. The study emphasizes the need for optimizing CT scanning and contrast protocols to reduce unnecessary contrast and radiation exposure to patients.</p><p><strong>Clinical relevance statement: </strong>The wide variability and lack of standardization of ICM media and radiation doses in CT protocols suggest the need for education and optimization of contrast usage and scan factors for optimizing image quality in CECT.</p><p><strong>Key points: </strong>There is a lack of patient-centric CT protocol optimization taking into consideration mainly patients' size. There is a lack of correlation between ICM volume and CT radiation dose across CT protocol. A ten-fold variation in iodine-load for the same CT protocol in sites suggests a lack of standardization.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"1915-1932"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey of CT radiation doses and iodinated contrast medium administration: an international multicentric study.\",\"authors\":\"Lina Karout, Mannudeep K Kalra\",\"doi\":\"10.1007/s00330-024-11017-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess the relationship between intravenous iodinated contrast media (ICM) administration usage and radiation doses for contrast-enhanced (CE) CT of head, chest, and abdomen-pelvis (AP) in international, multicenter settings.</p><p><strong>Methods: </strong>Our international (n = 16 countries), multicenter (n = 43 sites), and cross-sectional (ConRad) study had two parts. Part 1: Redcap survey with questions on information related to CT and ICM manufacturer/brand and respective protocols. Part 2: Information on 3,258 patients (18-96 years; M:F 1654:1604) who underwent CECT for a routine head (n = 456), chest (n = 528), AP (n = 599), head CT angiography (n = 539), pulmonary embolism (n = 599), and liver CT examinations (n = 537) at 43 sites across five continents. The following information was recorded: hospital name, patient age, gender, body mass index [BMI], clinical indications, scan parameters (number of scan phases, kV), IV-contrast information (concentration, volume, flow rate, and delay), and dose indices (CTDIvol and DLP).</p><p><strong>Results: </strong>Most routine chest (58.4%) and AP (68.7%) CECT exams were performed with 2-4 scan phases with fixed scan delay (chest 71.4%; AP 79.8%, liver CECT 50.7%) following ICM administration. Most sites did not change kV across different patients and scan phases; most CECT protocols were performed at 120-140 kV (83%, 1979/2685). There were no significant differences between radiation doses for non-contrast (CTDIvol 24 [16-30] mGy; DLP 633 [414-702] mGy·cm) and post-contrast phases (22 [19-27] mGy; 648 [392-694] mGy·cm) (p = 0.142). Sites that used bolus tracking for chest and AP CECT had lower CTDIvol than sites with fixed scan delays (p < 0.001). There was no correlation between BMI and CTDIvol (r<sup>2</sup> ≤ - 0.1 to 0.1, p = 0.931).</p><p><strong>Conclusion: </strong>Our study demonstrates up to ten-fold variability in ICM injection protocols and radiation doses across different CT protocols. The study emphasizes the need for optimizing CT scanning and contrast protocols to reduce unnecessary contrast and radiation exposure to patients.</p><p><strong>Clinical relevance statement: </strong>The wide variability and lack of standardization of ICM media and radiation doses in CT protocols suggest the need for education and optimization of contrast usage and scan factors for optimizing image quality in CECT.</p><p><strong>Key points: </strong>There is a lack of patient-centric CT protocol optimization taking into consideration mainly patients' size. There is a lack of correlation between ICM volume and CT radiation dose across CT protocol. A ten-fold variation in iodine-load for the same CT protocol in sites suggests a lack of standardization.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"1915-1932\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11017-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11017-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Survey of CT radiation doses and iodinated contrast medium administration: an international multicentric study.
Objective: To assess the relationship between intravenous iodinated contrast media (ICM) administration usage and radiation doses for contrast-enhanced (CE) CT of head, chest, and abdomen-pelvis (AP) in international, multicenter settings.
Methods: Our international (n = 16 countries), multicenter (n = 43 sites), and cross-sectional (ConRad) study had two parts. Part 1: Redcap survey with questions on information related to CT and ICM manufacturer/brand and respective protocols. Part 2: Information on 3,258 patients (18-96 years; M:F 1654:1604) who underwent CECT for a routine head (n = 456), chest (n = 528), AP (n = 599), head CT angiography (n = 539), pulmonary embolism (n = 599), and liver CT examinations (n = 537) at 43 sites across five continents. The following information was recorded: hospital name, patient age, gender, body mass index [BMI], clinical indications, scan parameters (number of scan phases, kV), IV-contrast information (concentration, volume, flow rate, and delay), and dose indices (CTDIvol and DLP).
Results: Most routine chest (58.4%) and AP (68.7%) CECT exams were performed with 2-4 scan phases with fixed scan delay (chest 71.4%; AP 79.8%, liver CECT 50.7%) following ICM administration. Most sites did not change kV across different patients and scan phases; most CECT protocols were performed at 120-140 kV (83%, 1979/2685). There were no significant differences between radiation doses for non-contrast (CTDIvol 24 [16-30] mGy; DLP 633 [414-702] mGy·cm) and post-contrast phases (22 [19-27] mGy; 648 [392-694] mGy·cm) (p = 0.142). Sites that used bolus tracking for chest and AP CECT had lower CTDIvol than sites with fixed scan delays (p < 0.001). There was no correlation between BMI and CTDIvol (r2 ≤ - 0.1 to 0.1, p = 0.931).
Conclusion: Our study demonstrates up to ten-fold variability in ICM injection protocols and radiation doses across different CT protocols. The study emphasizes the need for optimizing CT scanning and contrast protocols to reduce unnecessary contrast and radiation exposure to patients.
Clinical relevance statement: The wide variability and lack of standardization of ICM media and radiation doses in CT protocols suggest the need for education and optimization of contrast usage and scan factors for optimizing image quality in CECT.
Key points: There is a lack of patient-centric CT protocol optimization taking into consideration mainly patients' size. There is a lack of correlation between ICM volume and CT radiation dose across CT protocol. A ten-fold variation in iodine-load for the same CT protocol in sites suggests a lack of standardization.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.