Lixin Liu, Yuning Wang, Jiuyi Sun, Yunan Zhang, Xiangyu Zhang, Lili Wu, Yingli Liu, Xuan Zhang, Yidi Xia, Qiumei Zhang, Ning Gao
{"title":"通过合成氟罗沙星-D-酒石酸药用盐改善氟罗沙星的光稳定性、溶解性、吸湿稳定性和抗菌活性。","authors":"Lixin Liu, Yuning Wang, Jiuyi Sun, Yunan Zhang, Xiangyu Zhang, Lili Wu, Yingli Liu, Xuan Zhang, Yidi Xia, Qiumei Zhang, Ning Gao","doi":"10.1016/j.ejpb.2024.114464","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the solubility of the fluoroquinolone drug fleroxacin (FL), based on the previous experience of our research group in synthesizing co-crystals/salts of quinolone drugs to improve the physicochemical properties of drugs, Fleroxacin-D-tartaric acid dihydrate salt (FL-D-TT, C<sub>17</sub>H<sub>19</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>·C<sub>4</sub>H<sub>5</sub>O<sub>6</sub>·2(H<sub>2</sub>O)), was synthesized for the first time using fleroxacin and D/L-tartaric acid (D/L-TT). Structural characterization of FL-D-TT was carried out using single-crystal X-ray diffraction, infrared spectral analysis (FT-IR) and powder X-ray diffraction (PXRD). Molecular electrostatic potential analysis showed that D-tartaric acid interacted more readily with FL than L-tartaric acid. The solubility of FL-D-TT (9.71 mg/mL, 1.82 mg/mL) was significantly higher compared to FL (0.39 mg/mL, 0.71 mg/mL) in water and buffer solution at pH 7.4. This may be attributed to the formation of charge-assisted hydrogen bonds (CAHBs) between FL and D-TT that facilitates the dissociation of FL cations in the dissolution medium, leading to an increase in FL solubility. This also led to some improvement in the in vitro antimicrobial activity of FL-D-TT against <em>E. coli</em>, <em>S. typhi</em>, and <em>S. aureus.</em> In addition, the hygroscopic stability of FL has been improved. Surprisingly, FL-D-TT had better photostability than FL, which could be attributed to the introduction of D-TT to make the photosensitizing moiety of FL more stable, which led to the improvement of the photostability of FL.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"203 ","pages":"Article 114464"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved photostability, solubility, hygroscopic stability and antimicrobial activity of fleroxacin by synthesis of fleroxacin-D-tartaric acid pharmaceutical salt\",\"authors\":\"Lixin Liu, Yuning Wang, Jiuyi Sun, Yunan Zhang, Xiangyu Zhang, Lili Wu, Yingli Liu, Xuan Zhang, Yidi Xia, Qiumei Zhang, Ning Gao\",\"doi\":\"10.1016/j.ejpb.2024.114464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the solubility of the fluoroquinolone drug fleroxacin (FL), based on the previous experience of our research group in synthesizing co-crystals/salts of quinolone drugs to improve the physicochemical properties of drugs, Fleroxacin-D-tartaric acid dihydrate salt (FL-D-TT, C<sub>17</sub>H<sub>19</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>·C<sub>4</sub>H<sub>5</sub>O<sub>6</sub>·2(H<sub>2</sub>O)), was synthesized for the first time using fleroxacin and D/L-tartaric acid (D/L-TT). Structural characterization of FL-D-TT was carried out using single-crystal X-ray diffraction, infrared spectral analysis (FT-IR) and powder X-ray diffraction (PXRD). Molecular electrostatic potential analysis showed that D-tartaric acid interacted more readily with FL than L-tartaric acid. The solubility of FL-D-TT (9.71 mg/mL, 1.82 mg/mL) was significantly higher compared to FL (0.39 mg/mL, 0.71 mg/mL) in water and buffer solution at pH 7.4. This may be attributed to the formation of charge-assisted hydrogen bonds (CAHBs) between FL and D-TT that facilitates the dissociation of FL cations in the dissolution medium, leading to an increase in FL solubility. This also led to some improvement in the in vitro antimicrobial activity of FL-D-TT against <em>E. coli</em>, <em>S. typhi</em>, and <em>S. aureus.</em> In addition, the hygroscopic stability of FL has been improved. Surprisingly, FL-D-TT had better photostability than FL, which could be attributed to the introduction of D-TT to make the photosensitizing moiety of FL more stable, which led to the improvement of the photostability of FL.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"203 \",\"pages\":\"Article 114464\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S093964112400290X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093964112400290X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Improved photostability, solubility, hygroscopic stability and antimicrobial activity of fleroxacin by synthesis of fleroxacin-D-tartaric acid pharmaceutical salt
To improve the solubility of the fluoroquinolone drug fleroxacin (FL), based on the previous experience of our research group in synthesizing co-crystals/salts of quinolone drugs to improve the physicochemical properties of drugs, Fleroxacin-D-tartaric acid dihydrate salt (FL-D-TT, C17H19F3N3O3·C4H5O6·2(H2O)), was synthesized for the first time using fleroxacin and D/L-tartaric acid (D/L-TT). Structural characterization of FL-D-TT was carried out using single-crystal X-ray diffraction, infrared spectral analysis (FT-IR) and powder X-ray diffraction (PXRD). Molecular electrostatic potential analysis showed that D-tartaric acid interacted more readily with FL than L-tartaric acid. The solubility of FL-D-TT (9.71 mg/mL, 1.82 mg/mL) was significantly higher compared to FL (0.39 mg/mL, 0.71 mg/mL) in water and buffer solution at pH 7.4. This may be attributed to the formation of charge-assisted hydrogen bonds (CAHBs) between FL and D-TT that facilitates the dissociation of FL cations in the dissolution medium, leading to an increase in FL solubility. This also led to some improvement in the in vitro antimicrobial activity of FL-D-TT against E. coli, S. typhi, and S. aureus. In addition, the hygroscopic stability of FL has been improved. Surprisingly, FL-D-TT had better photostability than FL, which could be attributed to the introduction of D-TT to make the photosensitizing moiety of FL more stable, which led to the improvement of the photostability of FL.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.