四氯乙烯对两种淡水桡足类的亚慢性影响:对地下水风险评估的影响。

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Mattia Di Cicco, Agostina Tabilio Di Camillo, Walter Di Marzio, Maria Elena Sáenz, Diana Maria Paola Galassi, Giuseppe Pieraccini, Angelo Galante, Davide Di Censo, Tiziana Di Lorenzo
{"title":"四氯乙烯对两种淡水桡足类的亚慢性影响:对地下水风险评估的影响。","authors":"Mattia Di Cicco, Agostina Tabilio Di Camillo, Walter Di Marzio, Maria Elena Sáenz, Diana Maria Paola Galassi, Giuseppe Pieraccini, Angelo Galante, Davide Di Censo, Tiziana Di Lorenzo","doi":"10.1002/etc.5977","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are persistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the sensitivity of stygobitic species-organisms uniquely adapted to groundwater environments. Through a comparative analysis of the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted-no-effect concentration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly, B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotoxicological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk-assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;00:1-13. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subchronic Effects of Tetrachloroethylene on Two Freshwater Copepod Species: Implications for Groundwater Risk Assessment.\",\"authors\":\"Mattia Di Cicco, Agostina Tabilio Di Camillo, Walter Di Marzio, Maria Elena Sáenz, Diana Maria Paola Galassi, Giuseppe Pieraccini, Angelo Galante, Davide Di Censo, Tiziana Di Lorenzo\",\"doi\":\"10.1002/etc.5977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are persistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the sensitivity of stygobitic species-organisms uniquely adapted to groundwater environments. Through a comparative analysis of the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted-no-effect concentration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly, B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotoxicological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk-assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;00:1-13. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>\",\"PeriodicalId\":11793,\"journal\":{\"name\":\"Environmental Toxicology and Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology and Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/etc.5977\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/etc.5977","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脂肪族氯化碳氢化合物,特别是四氯乙烯(又称全氯乙烯 [PCE]),是具有持久性、流动性和毒性(PMT)和/或极持久性、流动性和毒性(vPMT)的地下水污染物,其含量往往超过安全饮用水阈值。本研究深入探讨了多氯联苯醚的地下水风险评估问题,重点研究了苯乙烯类生物的敏感性--这些生物对地下水环境有着独特的适应性。通过比较分析五氯乙酸对两种桡足类生物--有节桡足类的 Moraria sp.和无节桡足类的 Bryocamptus zschokkei 的运动行为的亚慢性影响,我们强调了目前欧洲针对地下水生态系统的五氯乙酸预测无效应浓度的不足之处。我们的研究结果表明,当浓度(32 毫微克/升 PCE)远低于安全阈值时,这两种生物都会出现明显的行为障碍,这表明欧洲现行的地下水风险评估准则可能无法充分保护地下水栖息地独特的生物多样性。重要的是,B. zschokkei 对 PCE 的敏感性与目标苯乙烯类物种相当或更高,这表明它可以作为地下水风险评估的替代物种。本研究补充了关于地下水物种对 PMT/vPMT 化学品的生态毒理学敏感性的有限研究,并强调了改进地下水风险评估方法的必要性,这种方法应考虑到苯鞭毛虫物种的敏感性。环境毒物化学 2024;00:1-13。© 2024 The Author(s).环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subchronic Effects of Tetrachloroethylene on Two Freshwater Copepod Species: Implications for Groundwater Risk Assessment.

Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are persistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the sensitivity of stygobitic species-organisms uniquely adapted to groundwater environments. Through a comparative analysis of the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted-no-effect concentration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly, B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotoxicological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk-assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;00:1-13. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信