Shijie Liu, Vaibhav Deshmukh, Fansen Meng, Yidan Wang, Yuka Morikawa, Jeffrey D Steimle, Rich Gang Li, Jun Wang, James F Martin
{"title":"微管将乙酰化的 YAP 封闭在细胞质中并抑制心脏再生","authors":"Shijie Liu, Vaibhav Deshmukh, Fansen Meng, Yidan Wang, Yuka Morikawa, Jeffrey D Steimle, Rich Gang Li, Jun Wang, James F Martin","doi":"10.1161/CIRCULATIONAHA.123.067646","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined.</p><p><strong>Methods: </strong>We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and <i>αMHC-MerCreMer (MCM); Yap-loxP/K265R</i> mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration.</p><p><strong>Results: </strong>We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K265 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm.</p><p><strong>Conclusions: </strong>After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.</p>","PeriodicalId":10331,"journal":{"name":"Circulation","volume":" ","pages":"59-75"},"PeriodicalIF":35.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration.\",\"authors\":\"Shijie Liu, Vaibhav Deshmukh, Fansen Meng, Yidan Wang, Yuka Morikawa, Jeffrey D Steimle, Rich Gang Li, Jun Wang, James F Martin\",\"doi\":\"10.1161/CIRCULATIONAHA.123.067646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined.</p><p><strong>Methods: </strong>We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and <i>αMHC-MerCreMer (MCM); Yap-loxP/K265R</i> mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration.</p><p><strong>Results: </strong>We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K265 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm.</p><p><strong>Conclusions: </strong>After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.</p>\",\"PeriodicalId\":10331,\"journal\":{\"name\":\"Circulation\",\"volume\":\" \",\"pages\":\"59-75\"},\"PeriodicalIF\":35.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCULATIONAHA.123.067646\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCULATIONAHA.123.067646","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration.
Background: The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined.
Methods: We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and αMHC-MerCreMer (MCM); Yap-loxP/K265R mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration.
Results: We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K265 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm.
Conclusions: After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.
期刊介绍:
Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.