Ming Wang, Bangshun Dai, Qiushi Liu, Xiansheng Zhang
{"title":"前列腺癌异质性细胞死亡模式的预后和免疫学意义。","authors":"Ming Wang, Bangshun Dai, Qiushi Liu, Xiansheng Zhang","doi":"10.1186/s12935-024-03462-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes.</p><p><strong>Materials and methods: </strong>We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model.</p><p><strong>Results: </strong>Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels.</p><p><strong>Conclusion: </strong>In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"297"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344416/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer.\",\"authors\":\"Ming Wang, Bangshun Dai, Qiushi Liu, Xiansheng Zhang\",\"doi\":\"10.1186/s12935-024-03462-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes.</p><p><strong>Materials and methods: </strong>We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model.</p><p><strong>Results: </strong>Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels.</p><p><strong>Conclusion: </strong>In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"297\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03462-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03462-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer.
Background: Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes.
Materials and methods: We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model.
Results: Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels.
Conclusion: In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.