{"title":"肺癌造血干细胞新陈代谢重编程:糖酵解、氧化磷酸化和 2-DG 的作用。","authors":"Ziqi Guo, Yaping Liu, Xin Li, Yuying Huang, Zuping Zhou, Cheng Yang","doi":"10.1186/s13062-024-00514-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) exhibit significant functional and metabolic alterations within the lung cancer microenvironment, contributing to tumor progression and immune evasion by increasing differentiation into myeloid-derived suppressor cells (MDSCs). Our aim is to analyze the metabolic transition of HSCs from glycolysis to oxidative phosphorylation (OXPHOS) in lung cancer and determine its effects on HSC functionality. Using a murine Lewis Lung Carcinoma lung cancer model, we conducted metabolic profiling of long-term and short-term HSCs, as well as multipotent progenitors, comparing their metabolic states in normal and cancer conditions. We measured glucose uptake using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) and assessed levels of lactate, acetyl-coenzyme A, and ATP. Mitochondrial functionality was evaluated through flow cytometry, alongside the impact of the glucose metabolism inhibitor 2-DG on HSC differentiation and mitochondrial activity. HSCs under lung cancer conditions showed increased glucose uptake and lactate production, with an associated rise in OXPHOS activity, marking a metabolic shift. Treatment with 2-DG led to decreased T-HSCs and MDSCs and an increased red blood cell count, highlighting its potential to influence metabolic and differentiation pathways in HSCs. This study provides novel insights into the metabolic reprogramming of HSCs in lung cancer, emphasizing the critical shift from glycolysis to OXPHOS and its implications for the therapeutic targeting of cancer-related metabolic pathways.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"73"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reprogramming hematopoietic stem cell metabolism in lung cancer: glycolysis, oxidative phosphorylation, and the role of 2-DG.\",\"authors\":\"Ziqi Guo, Yaping Liu, Xin Li, Yuying Huang, Zuping Zhou, Cheng Yang\",\"doi\":\"10.1186/s13062-024-00514-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hematopoietic stem cells (HSCs) exhibit significant functional and metabolic alterations within the lung cancer microenvironment, contributing to tumor progression and immune evasion by increasing differentiation into myeloid-derived suppressor cells (MDSCs). Our aim is to analyze the metabolic transition of HSCs from glycolysis to oxidative phosphorylation (OXPHOS) in lung cancer and determine its effects on HSC functionality. Using a murine Lewis Lung Carcinoma lung cancer model, we conducted metabolic profiling of long-term and short-term HSCs, as well as multipotent progenitors, comparing their metabolic states in normal and cancer conditions. We measured glucose uptake using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) and assessed levels of lactate, acetyl-coenzyme A, and ATP. Mitochondrial functionality was evaluated through flow cytometry, alongside the impact of the glucose metabolism inhibitor 2-DG on HSC differentiation and mitochondrial activity. HSCs under lung cancer conditions showed increased glucose uptake and lactate production, with an associated rise in OXPHOS activity, marking a metabolic shift. Treatment with 2-DG led to decreased T-HSCs and MDSCs and an increased red blood cell count, highlighting its potential to influence metabolic and differentiation pathways in HSCs. This study provides novel insights into the metabolic reprogramming of HSCs in lung cancer, emphasizing the critical shift from glycolysis to OXPHOS and its implications for the therapeutic targeting of cancer-related metabolic pathways.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"73\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00514-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00514-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
造血干细胞(HSCs)在肺癌微环境中表现出显著的功能和代谢改变,通过增加分化成髓源性抑制细胞(MDSCs)来促进肿瘤进展和免疫逃避。我们的目的是分析肺癌中造血干细胞从糖酵解到氧化磷酸化(OXPHOS)的代谢转变,并确定其对造血干细胞功能的影响。我们利用小鼠路易斯肺癌肺癌模型,对长期和短期造血干细胞以及多能祖细胞进行了代谢分析,比较了它们在正常和癌症条件下的代谢状态。我们使用 2-[N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)氨基]-2-脱氧葡萄糖(2-NBDG)测量葡萄糖摄取量,并评估乳酸、乙酰辅酶 A 和 ATP 的水平。线粒体功能通过流式细胞术进行评估,同时还评估了葡萄糖代谢抑制剂2-DG对造血干细胞分化和线粒体活性的影响。肺癌条件下的造血干细胞显示出葡萄糖摄取和乳酸生成的增加,与之相关的是OXPHOS活性的上升,这标志着新陈代谢的转变。用2-DG处理后,T-造血干细胞和MDSCs减少,红细胞数量增加,这突显了2-DG影响造血干细胞代谢和分化途径的潜力。这项研究为肺癌造血干细胞的代谢重编程提供了新的见解,强调了从糖酵解到OXPHOS的关键转变及其对癌症相关代谢途径靶向治疗的影响。
Reprogramming hematopoietic stem cell metabolism in lung cancer: glycolysis, oxidative phosphorylation, and the role of 2-DG.
Hematopoietic stem cells (HSCs) exhibit significant functional and metabolic alterations within the lung cancer microenvironment, contributing to tumor progression and immune evasion by increasing differentiation into myeloid-derived suppressor cells (MDSCs). Our aim is to analyze the metabolic transition of HSCs from glycolysis to oxidative phosphorylation (OXPHOS) in lung cancer and determine its effects on HSC functionality. Using a murine Lewis Lung Carcinoma lung cancer model, we conducted metabolic profiling of long-term and short-term HSCs, as well as multipotent progenitors, comparing their metabolic states in normal and cancer conditions. We measured glucose uptake using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) and assessed levels of lactate, acetyl-coenzyme A, and ATP. Mitochondrial functionality was evaluated through flow cytometry, alongside the impact of the glucose metabolism inhibitor 2-DG on HSC differentiation and mitochondrial activity. HSCs under lung cancer conditions showed increased glucose uptake and lactate production, with an associated rise in OXPHOS activity, marking a metabolic shift. Treatment with 2-DG led to decreased T-HSCs and MDSCs and an increased red blood cell count, highlighting its potential to influence metabolic and differentiation pathways in HSCs. This study provides novel insights into the metabolic reprogramming of HSCs in lung cancer, emphasizing the critical shift from glycolysis to OXPHOS and its implications for the therapeutic targeting of cancer-related metabolic pathways.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.