抑制Schnurri-3可挽救成骨不全症OIM模型中的骨骼脆性和血管骨骼干细胞龛病理学。

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B Greenblatt, Ren Xu
{"title":"抑制Schnurri-3可挽救成骨不全症OIM模型中的骨骼脆性和血管骨骼干细胞龛病理学。","authors":"Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B Greenblatt, Ren Xu","doi":"10.1038/s41413-024-00349-1","DOIUrl":null,"url":null,"abstract":"<p><p>Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2<sup>oim/oim</sup> mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2<sup>oim/oim</sup> mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2<sup>oim/oim</sup> phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta.\",\"authors\":\"Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B Greenblatt, Ren Xu\",\"doi\":\"10.1038/s41413-024-00349-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2<sup>oim/oim</sup> mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2<sup>oim/oim</sup> mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2<sup>oim/oim</sup> phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00349-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00349-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

成骨不全症(OI)是一种骨量低和骨折风险增加的疾病,由一系列基因变异引起,主要包括编码 I 型胶原蛋白的基因突变。众所周知,OI 反映了成骨细胞活性的缺陷,但目前还不清楚 OI 是否也反映了组成骨骼的许多其他细胞类型的缺陷,包括骨骼血管内皮细胞或产生成骨细胞的骨骼干细胞群的缺陷,也不清楚纠正这些更广泛的缺陷是否有治疗作用。在这里,我们发现,在Col1a2oim/oim小鼠体内,骨骼干细胞(SSCs)和骨骼动脉内皮细胞(AECs)的数量增加了,Col1a2oim/oim小鼠是一种经过充分研究的中重度OI动物模型,这表明血管SSC生态位的破坏是OI发病机制的一个特征。此外,将Col1a2oim/oim小鼠与缺乏骨骼血管生成和骨形成负调控因子Schnurri 3(SHN3)的小鼠杂交,不仅能纠正SSC和AEC表型,还能有力地纠正骨量和自发性骨折表型。由于这一发现表明抑制 SHN3 对治疗 OI 有很强的治疗作用,研究人员使用骨靶向 AAV 来介导 Shn3 敲除,从而挽救了 Col1a2oim/oim 表型,并为靶向 SHN3 治疗 OI 提供了治疗概念验证。总之,这项工作既为抑制SHN3通路提供了概念验证,也更广泛地解决了干细胞/造血干细胞生态位的缺陷,是治疗OI的一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta.

Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta.

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信