Chao Li , Shuo Wang , Yuan Liu , Xihe Huang , Yan Zhuang , Shuhong Wu , Ying Wang , Na Wen , Kaifeng Wu , Zhengxin Ding , Jinlin Long
{"title":"在共价有机框架中叠加双电场,实现高效光催化氢进化","authors":"Chao Li , Shuo Wang , Yuan Liu , Xihe Huang , Yan Zhuang , Shuhong Wu , Ying Wang , Na Wen , Kaifeng Wu , Zhengxin Ding , Jinlin Long","doi":"10.1016/S1872-2067(24)60075-6","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) are promising materials for converting solar energy into green hydrogen. However, limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction (HER). In this study, the intrinsically tunable internal bond electric field (IBEF) at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field (IMEF) induced by the donor-acceptor (D-A) structure for an efficient HER. The aligned orientation of IBEF and IMEF resulted in a remarkable H<sub>2</sub> evolution rate of 57.3 mmol·g<sup>–1</sup>·h<sup>–1</sup> on TNCA, which was approximately 520 times higher than that of TCNA (0.11 mmol·g<sup>–1</sup>·h<sup>–1</sup>) with the opposing electric field orientation. The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer, kinetically facilitating the migration of photogenerated electrons from D to A. Furthermore, theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only provides a strong driving force for carrier transfer but also effectively hinders the return of free electrons to the valence band, improving the utilization of photoelectrons. This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 164-175"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution\",\"authors\":\"Chao Li , Shuo Wang , Yuan Liu , Xihe Huang , Yan Zhuang , Shuhong Wu , Ying Wang , Na Wen , Kaifeng Wu , Zhengxin Ding , Jinlin Long\",\"doi\":\"10.1016/S1872-2067(24)60075-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covalent organic frameworks (COFs) are promising materials for converting solar energy into green hydrogen. However, limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction (HER). In this study, the intrinsically tunable internal bond electric field (IBEF) at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field (IMEF) induced by the donor-acceptor (D-A) structure for an efficient HER. The aligned orientation of IBEF and IMEF resulted in a remarkable H<sub>2</sub> evolution rate of 57.3 mmol·g<sup>–1</sup>·h<sup>–1</sup> on TNCA, which was approximately 520 times higher than that of TCNA (0.11 mmol·g<sup>–1</sup>·h<sup>–1</sup>) with the opposing electric field orientation. The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer, kinetically facilitating the migration of photogenerated electrons from D to A. Furthermore, theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only provides a strong driving force for carrier transfer but also effectively hinders the return of free electrons to the valence band, improving the utilization of photoelectrons. This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"63 \",\"pages\":\"Pages 164-175\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600756\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600756","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution
Covalent organic frameworks (COFs) are promising materials for converting solar energy into green hydrogen. However, limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction (HER). In this study, the intrinsically tunable internal bond electric field (IBEF) at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field (IMEF) induced by the donor-acceptor (D-A) structure for an efficient HER. The aligned orientation of IBEF and IMEF resulted in a remarkable H2 evolution rate of 57.3 mmol·g–1·h–1 on TNCA, which was approximately 520 times higher than that of TCNA (0.11 mmol·g–1·h–1) with the opposing electric field orientation. The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer, kinetically facilitating the migration of photogenerated electrons from D to A. Furthermore, theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only provides a strong driving force for carrier transfer but also effectively hinders the return of free electrons to the valence band, improving the utilization of photoelectrons. This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.