Qiao-Ling Mo , Rui Xiong , Jun-Hao Dong, Bai-Sheng Sa, Jing-Ying Zheng, Qing Chen, Yue Wu, Fang-Xing Xiao
{"title":"确定绝缘聚合物操纵光氧化催化的起源","authors":"Qiao-Ling Mo , Rui Xiong , Jun-Hao Dong, Bai-Sheng Sa, Jing-Ying Zheng, Qing Chen, Yue Wu, Fang-Xing Xiao","doi":"10.1016/S1872-2067(24)60070-7","DOIUrl":null,"url":null,"abstract":"<div><p>Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalized π electrons along the molecular chain framework. Up to date, origin of insulating polymer regulated charge transfer has not yet been uncovered. In this work, we unleash the root origin of charge transport capability of insulating polymer in photocatalysis. We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides (TMCs), which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics, triggering the generation of defect over TMCs for prolonging carrier lifetime, and acting as hole-trapping mediator for retarding charge recombination. These synergistic roles contribute to the charge transfer of insulating polymer. Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 109-123"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of origin of insulating polymer maneuvered photoredox catalysis\",\"authors\":\"Qiao-Ling Mo , Rui Xiong , Jun-Hao Dong, Bai-Sheng Sa, Jing-Ying Zheng, Qing Chen, Yue Wu, Fang-Xing Xiao\",\"doi\":\"10.1016/S1872-2067(24)60070-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalized π electrons along the molecular chain framework. Up to date, origin of insulating polymer regulated charge transfer has not yet been uncovered. In this work, we unleash the root origin of charge transport capability of insulating polymer in photocatalysis. We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides (TMCs), which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics, triggering the generation of defect over TMCs for prolonging carrier lifetime, and acting as hole-trapping mediator for retarding charge recombination. These synergistic roles contribute to the charge transfer of insulating polymer. Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"63 \",\"pages\":\"Pages 109-123\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600707\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Identification of origin of insulating polymer maneuvered photoredox catalysis
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalized π electrons along the molecular chain framework. Up to date, origin of insulating polymer regulated charge transfer has not yet been uncovered. In this work, we unleash the root origin of charge transport capability of insulating polymer in photocatalysis. We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides (TMCs), which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics, triggering the generation of defect over TMCs for prolonging carrier lifetime, and acting as hole-trapping mediator for retarding charge recombination. These synergistic roles contribute to the charge transfer of insulating polymer. Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.