Yin-Ping Li , Xin-Bo Ge , Xi-Lin Shi , Hong-Ling Ma
{"title":"用于盐穴碳溶液开采和储能的浸出管动态特性实验研究","authors":"Yin-Ping Li , Xin-Bo Ge , Xi-Lin Shi , Hong-Ling Ma","doi":"10.1016/j.petsci.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>Salt caverns are extensively utilized for storing various substances such as fossil energy, hydrogen, compressed air, nuclear waste, and industrial solid waste. In China, when the salt cavern is leached through single-well water solution mining with oil as a cushion, engineering challenges arise with the leaching tubing, leading to issues like damage and instability. These problems significantly hinder the progress of cavern construction and the control of cavern shape. The primary cause of this is the flow-induced vibration instability of leaching tubing within a confined space, which results in severe bending or damage to the tubing. This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus. The experiment utilizes a silicone-rubber pipe (SRP) and a polycarbonate pipe (PCP) to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid. These factors include external space constraint, flexural rigidity, medium outside the pipe, overhanging length, and end conditions. The experiments reveal four dynamic response phenomena: water hammer, static buckling, chaotic motion, and flutter instability. The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid. Additionally, the flutter critical flow velocity is influenced by the end conditions and different external media.</p></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S199582262400178X/pdfft?md5=2c0116389c4ac1bef22fcf08ca8ea7f6&pid=1-s2.0-S199582262400178X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of dynamic characteristics of leaching tubing for solution mining of salt cavern carbon and energy storage\",\"authors\":\"Yin-Ping Li , Xin-Bo Ge , Xi-Lin Shi , Hong-Ling Ma\",\"doi\":\"10.1016/j.petsci.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Salt caverns are extensively utilized for storing various substances such as fossil energy, hydrogen, compressed air, nuclear waste, and industrial solid waste. In China, when the salt cavern is leached through single-well water solution mining with oil as a cushion, engineering challenges arise with the leaching tubing, leading to issues like damage and instability. These problems significantly hinder the progress of cavern construction and the control of cavern shape. The primary cause of this is the flow-induced vibration instability of leaching tubing within a confined space, which results in severe bending or damage to the tubing. This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus. The experiment utilizes a silicone-rubber pipe (SRP) and a polycarbonate pipe (PCP) to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid. These factors include external space constraint, flexural rigidity, medium outside the pipe, overhanging length, and end conditions. The experiments reveal four dynamic response phenomena: water hammer, static buckling, chaotic motion, and flutter instability. The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid. Additionally, the flutter critical flow velocity is influenced by the end conditions and different external media.</p></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S199582262400178X/pdfft?md5=2c0116389c4ac1bef22fcf08ca8ea7f6&pid=1-s2.0-S199582262400178X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S199582262400178X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S199582262400178X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental investigation of dynamic characteristics of leaching tubing for solution mining of salt cavern carbon and energy storage
Salt caverns are extensively utilized for storing various substances such as fossil energy, hydrogen, compressed air, nuclear waste, and industrial solid waste. In China, when the salt cavern is leached through single-well water solution mining with oil as a cushion, engineering challenges arise with the leaching tubing, leading to issues like damage and instability. These problems significantly hinder the progress of cavern construction and the control of cavern shape. The primary cause of this is the flow-induced vibration instability of leaching tubing within a confined space, which results in severe bending or damage to the tubing. This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus. The experiment utilizes a silicone-rubber pipe (SRP) and a polycarbonate pipe (PCP) to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid. These factors include external space constraint, flexural rigidity, medium outside the pipe, overhanging length, and end conditions. The experiments reveal four dynamic response phenomena: water hammer, static buckling, chaotic motion, and flutter instability. The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid. Additionally, the flutter critical flow velocity is influenced by the end conditions and different external media.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.