Shangrui Wang , Chen Min , Zheng Liang , Yuanmeng Zhang , Qingyu Gao
{"title":"公民决策:评估规则驱动型和学习驱动型自动应答器对公民主动联系的影响","authors":"Shangrui Wang , Chen Min , Zheng Liang , Yuanmeng Zhang , Qingyu Gao","doi":"10.1016/j.chb.2024.108413","DOIUrl":null,"url":null,"abstract":"<div><p>While many studies have investigated the impact of artificial intelligence (AI) deployment in the public sector on government-citizen interactions, findings remain controversial due to the technical complexity and contextual diversity. This study distinguishes between rule-driven and learning-driven AI and explores their impact as automated respondents on citizen-initiated contact, an important scenario for public participation with initiative. Based on a conjoint experiment with 763 participations (4578 observations), this study suggests that AI deployments enormously reduce the likelihood of citizen-initiated contact compared to human response, with learning-driven AI having a higher negative effect than rule-driven AI. In addition, the causal effects of respondent image, contact channel, contact purpose, and matter attributes on citizen-initiated contact, as well as their moderating effects, are explored. These findings make theoretical implications and calls for public participation in the roaring AI deployment in the public sector.</p></div>","PeriodicalId":48471,"journal":{"name":"Computers in Human Behavior","volume":"161 ","pages":"Article 108413"},"PeriodicalIF":9.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The decision-making by citizens: Evaluating the effects of rule-driven and learning-driven automated responders on citizen-initiated contact\",\"authors\":\"Shangrui Wang , Chen Min , Zheng Liang , Yuanmeng Zhang , Qingyu Gao\",\"doi\":\"10.1016/j.chb.2024.108413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While many studies have investigated the impact of artificial intelligence (AI) deployment in the public sector on government-citizen interactions, findings remain controversial due to the technical complexity and contextual diversity. This study distinguishes between rule-driven and learning-driven AI and explores their impact as automated respondents on citizen-initiated contact, an important scenario for public participation with initiative. Based on a conjoint experiment with 763 participations (4578 observations), this study suggests that AI deployments enormously reduce the likelihood of citizen-initiated contact compared to human response, with learning-driven AI having a higher negative effect than rule-driven AI. In addition, the causal effects of respondent image, contact channel, contact purpose, and matter attributes on citizen-initiated contact, as well as their moderating effects, are explored. These findings make theoretical implications and calls for public participation in the roaring AI deployment in the public sector.</p></div>\",\"PeriodicalId\":48471,\"journal\":{\"name\":\"Computers in Human Behavior\",\"volume\":\"161 \",\"pages\":\"Article 108413\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747563224002814\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224002814","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
The decision-making by citizens: Evaluating the effects of rule-driven and learning-driven automated responders on citizen-initiated contact
While many studies have investigated the impact of artificial intelligence (AI) deployment in the public sector on government-citizen interactions, findings remain controversial due to the technical complexity and contextual diversity. This study distinguishes between rule-driven and learning-driven AI and explores their impact as automated respondents on citizen-initiated contact, an important scenario for public participation with initiative. Based on a conjoint experiment with 763 participations (4578 observations), this study suggests that AI deployments enormously reduce the likelihood of citizen-initiated contact compared to human response, with learning-driven AI having a higher negative effect than rule-driven AI. In addition, the causal effects of respondent image, contact channel, contact purpose, and matter attributes on citizen-initiated contact, as well as their moderating effects, are explored. These findings make theoretical implications and calls for public participation in the roaring AI deployment in the public sector.
期刊介绍:
Computers in Human Behavior is a scholarly journal that explores the psychological aspects of computer use. It covers original theoretical works, research reports, literature reviews, and software and book reviews. The journal examines both the use of computers in psychology, psychiatry, and related fields, and the psychological impact of computer use on individuals, groups, and society. Articles discuss topics such as professional practice, training, research, human development, learning, cognition, personality, and social interactions. It focuses on human interactions with computers, considering the computer as a medium through which human behaviors are shaped and expressed. Professionals interested in the psychological aspects of computer use will find this journal valuable, even with limited knowledge of computers.