四边形网格上的新型 Q1 有限体积元素方案系列

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanhui Zhou , Shuai Su
{"title":"四边形网格上的新型 Q1 有限体积元素方案系列","authors":"Yanhui Zhou ,&nbsp;Shuai Su","doi":"10.1016/j.camwa.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>A novel family of isoparametric bilinear finite volume element schemes are constructed and analyzed to solve the anisotropic diffusion problems on general convex quadrilateral meshes. These new schemes are obtained by employing a special quadrature rule to approximate the line integrals in classical <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-finite volume element method. The new quadrature rule is a linear combination of trapezoidal and midpoint rules, and the weights depend on a parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span>. The novelty of this work is that, for any fully anisotropic diffusion tensor, we provide some specific <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> to ensure the coercivity result of the proposed schemes on arbitrary parallelogram, quasi-parallelogram, trapezoidal and some general convex quadrilateral meshes. More interesting is that, the parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> can only involves the anisotropic diffusion tensor and the geometry of quadrilateral cell. An optimal <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error estimate is also proved on quasi-parallelogram meshes. Finally, the theoretical findings are validated by several numerical examples.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel family of Q1-finite volume element schemes on quadrilateral meshes\",\"authors\":\"Yanhui Zhou ,&nbsp;Shuai Su\",\"doi\":\"10.1016/j.camwa.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel family of isoparametric bilinear finite volume element schemes are constructed and analyzed to solve the anisotropic diffusion problems on general convex quadrilateral meshes. These new schemes are obtained by employing a special quadrature rule to approximate the line integrals in classical <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-finite volume element method. The new quadrature rule is a linear combination of trapezoidal and midpoint rules, and the weights depend on a parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span>. The novelty of this work is that, for any fully anisotropic diffusion tensor, we provide some specific <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> to ensure the coercivity result of the proposed schemes on arbitrary parallelogram, quasi-parallelogram, trapezoidal and some general convex quadrilateral meshes. More interesting is that, the parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> can only involves the anisotropic diffusion tensor and the geometry of quadrilateral cell. An optimal <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error estimate is also proved on quasi-parallelogram meshes. Finally, the theoretical findings are validated by several numerical examples.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003742\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003742","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文构建并分析了一系列新颖的等参数双线性有限体积单元方案,用于解决一般凸四边形网格上的各向异性扩散问题。这些新方案是通过采用一种特殊的正交规则来逼近经典 Q1 有限体积元素方法中的线积分而获得的。新的正交规则是梯形规则和中点规则的线性组合,权重取决于参数ωK。这项工作的新颖之处在于,对于任何完全各向异性的扩散张量,我们提供了一些特定的ωK,以确保所提方案在任意平行四边形、准平行四边形、梯形和一些一般凸四边形网格上的矫顽力结果。更有趣的是,参数ωK 只涉及各向异性扩散张量和四边形单元的几何形状。此外,还证明了准平行四边形网格的最佳 H1 误差估计值。最后,通过几个数值实例验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel family of Q1-finite volume element schemes on quadrilateral meshes

A novel family of isoparametric bilinear finite volume element schemes are constructed and analyzed to solve the anisotropic diffusion problems on general convex quadrilateral meshes. These new schemes are obtained by employing a special quadrature rule to approximate the line integrals in classical Q1-finite volume element method. The new quadrature rule is a linear combination of trapezoidal and midpoint rules, and the weights depend on a parameter ωK. The novelty of this work is that, for any fully anisotropic diffusion tensor, we provide some specific ωK to ensure the coercivity result of the proposed schemes on arbitrary parallelogram, quasi-parallelogram, trapezoidal and some general convex quadrilateral meshes. More interesting is that, the parameter ωK can only involves the anisotropic diffusion tensor and the geometry of quadrilateral cell. An optimal H1 error estimate is also proved on quasi-parallelogram meshes. Finally, the theoretical findings are validated by several numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信