ϕ6模型展开方法的新改进及其在新的(3+1)维可积分卡多姆采夫-彼得维亚什维利方程中的应用

Q1 Mathematics
{"title":"ϕ6模型展开方法的新改进及其在新的(3+1)维可积分卡多姆采夫-彼得维亚什维利方程中的应用","authors":"","doi":"10.1016/j.padiff.2024.100883","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an improvement for the <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method is presented. In this approach, contrary to the classical <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method, obtaining explicit solutions for nonlinear ordinary and partial differential equations is congenial and undemanding of any constraint conditions, where the method can be applied and used for obtaining solutions without having any conditions on them. Moreover, the new approach is used to obtain new solutions for the new <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional integrable Kadomtsev–Petviashvili equation. We demonstrated that for the same equation, the classical <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion and the improved <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion approaches produce the same family of solutions. However, the improved <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method is found to be more efficient and convenient.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002699/pdfft?md5=73e4802f4d820834ca2aad3bde0d6c96&pid=1-s2.0-S2666818124002699-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New improvement of the ϕ6-model expansion method and its applications to the new (3+1)-dimensional integrable Kadomtsev–Petviashvili equation\",\"authors\":\"\",\"doi\":\"10.1016/j.padiff.2024.100883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, an improvement for the <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method is presented. In this approach, contrary to the classical <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method, obtaining explicit solutions for nonlinear ordinary and partial differential equations is congenial and undemanding of any constraint conditions, where the method can be applied and used for obtaining solutions without having any conditions on them. Moreover, the new approach is used to obtain new solutions for the new <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional integrable Kadomtsev–Petviashvili equation. We demonstrated that for the same equation, the classical <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion and the improved <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion approaches produce the same family of solutions. However, the improved <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-model expansion method is found to be more efficient and convenient.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002699/pdfft?md5=73e4802f4d820834ca2aad3bde0d6c96&pid=1-s2.0-S2666818124002699-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种对 j6 模型展开方法的改进。在这种方法中,与经典的 ϕ6 模型展开方法相反,非线性常微分方程和偏微分方程的显式解的求取是先天性的,不需要任何约束条件,在没有任何条件的情况下就可以应用和使用该方法求取解。此外,新方法还用于求解新的(3+1)维可整的卡多姆采夫-彼得维亚什维利方程。我们证明,对于同一方程,经典的 j6 模型展开和改进的 j6 模型展开方法产生了相同的解。然而,我们发现改进的 ϕ6 模型展开方法更有效、更方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New improvement of the ϕ6-model expansion method and its applications to the new (3+1)-dimensional integrable Kadomtsev–Petviashvili equation

In this paper, an improvement for the ϕ6-model expansion method is presented. In this approach, contrary to the classical ϕ6-model expansion method, obtaining explicit solutions for nonlinear ordinary and partial differential equations is congenial and undemanding of any constraint conditions, where the method can be applied and used for obtaining solutions without having any conditions on them. Moreover, the new approach is used to obtain new solutions for the new (3+1)-dimensional integrable Kadomtsev–Petviashvili equation. We demonstrated that for the same equation, the classical ϕ6-model expansion and the improved ϕ6-model expansion approaches produce the same family of solutions. However, the improved ϕ6-model expansion method is found to be more efficient and convenient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信