{"title":"通过硫阴极的催化伪 8 电子氧化还原反应补救锂硫电池中的穿梭效应","authors":"Dantong Qiu, Huainan Qu, Dong Zheng, Xiaoxiao Zhang, Deyang Qu","doi":"10.1016/j.elecom.2024.107797","DOIUrl":null,"url":null,"abstract":"<div><p>A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (S<sub>x</sub><sup>2-</sup>, where 3 < x < 7) undergo rapid disproportionation into elemental sulfur (S<sub>8</sub>) and Li<sub>2</sub>S<sub>2</sub>, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as <span><math><mrow><msub><mi>S</mi><mn>8</mn></msub><mo>+</mo><msup><mrow><mn>8</mn><mi>L</mi><mi>i</mi></mrow><mo>+</mo></msup><mo>+</mo><mn>8</mn><mi>e</mi><mo>⇌</mo><msub><mrow><mn>4</mn><mi>L</mi><mi>i</mi></mrow><mn>2</mn></msub><msub><mi>S</mi><mn>2</mn></msub></mrow></math></span>. In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li<sub>2</sub>S<sub>2</sub> within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107797"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001401/pdfft?md5=cc77affa7850ff5b0ffee23757edfd90&pid=1-s2.0-S1388248124001401-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode\",\"authors\":\"Dantong Qiu, Huainan Qu, Dong Zheng, Xiaoxiao Zhang, Deyang Qu\",\"doi\":\"10.1016/j.elecom.2024.107797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (S<sub>x</sub><sup>2-</sup>, where 3 < x < 7) undergo rapid disproportionation into elemental sulfur (S<sub>8</sub>) and Li<sub>2</sub>S<sub>2</sub>, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as <span><math><mrow><msub><mi>S</mi><mn>8</mn></msub><mo>+</mo><msup><mrow><mn>8</mn><mi>L</mi><mi>i</mi></mrow><mo>+</mo></msup><mo>+</mo><mn>8</mn><mi>e</mi><mo>⇌</mo><msub><mrow><mn>4</mn><mi>L</mi><mi>i</mi></mrow><mn>2</mn></msub><msub><mi>S</mi><mn>2</mn></msub></mrow></math></span>. In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li<sub>2</sub>S<sub>2</sub> within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"167 \",\"pages\":\"Article 107797\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001401/pdfft?md5=cc77affa7850ff5b0ffee23757edfd90&pid=1-s2.0-S1388248124001401-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001401\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001401","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode
A catalytic pseudo-8-electron redox reaction of sulfur is achieved by facilitating the disproportionation of high-order polysulfide ions in a Li-Sulfur battery. Electrochemically generated polysulfide ions (Sx2-, where 3 < x < 7) undergo rapid disproportionation into elemental sulfur (S8) and Li2S2, catalyzed by a bifunctional carbon host/catalyst. The overall catalytic redox reaction at the sulfur cathode is represented as . In contrast to physical or chemical confinement methods for polysulfide ions, this approach remediates the shuttle effect by swiftly converting soluble polysulfides in the electrolyte to elemental sulfur and insoluble Li2S2 within the cathode matrix. As a result, the adverse chemical interaction between dissolved polysulfides and the Li anode is mitigated.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.