跨组织和细胞的骨骼基因组研究取得进展

IF 3.7 2区 生物学 Q2 CELL BIOLOGY
Genevieve Housman
{"title":"跨组织和细胞的骨骼基因组研究取得进展","authors":"Genevieve Housman","doi":"10.1016/j.gde.2024.102245","DOIUrl":null,"url":null,"abstract":"<div><p>Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from <em>in vivo</em> skeletal tissues, as well as the development of relevant <em>in vitro</em> skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"88 ","pages":"Article 102245"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000947/pdfft?md5=dc8f4465356de6f5ec2b769754b11bbf&pid=1-s2.0-S0959437X24000947-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in skeletal genomics research across tissues and cells\",\"authors\":\"Genevieve Housman\",\"doi\":\"10.1016/j.gde.2024.102245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from <em>in vivo</em> skeletal tissues, as well as the development of relevant <em>in vitro</em> skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"88 \",\"pages\":\"Article 102245\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000947/pdfft?md5=dc8f4465356de6f5ec2b769754b11bbf&pid=1-s2.0-S0959437X24000947-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000947\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000947","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼的表型变异对个体和物种具有生物学、行为学和生物医学功能影响。因此,了解基因组、环境和中介调控因素如何结合并相互作用以驱动骨骼特征的发展和进化至关重要。由于体内骨骼组织基因组和表型数据的收集范围不断扩大,以及相关体外骨骼细胞培养系统的开发,近期旨在阐明这些机制的研究工作成为可能。本综述概述了目前的研究工作,并建议在继续探索这种复杂性的过程中,应更加关注基因组与生理相关环境之间的相互作用是如何在种群和进化尺度上导致骨骼性状变异的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in skeletal genomics research across tissues and cells

Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from in vivo skeletal tissues, as well as the development of relevant in vitro skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信