低阶张量西尔维斯特方程的修正块海森伯方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mahsa Bagheri, Faranges Kyanfar, Abbas Salemi, Azita Tajaddini
{"title":"低阶张量西尔维斯特方程的修正块海森伯方法","authors":"Mahsa Bagheri,&nbsp;Faranges Kyanfar,&nbsp;Abbas Salemi,&nbsp;Azita Tajaddini","doi":"10.1016/j.cam.2024.116209","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on iteratively solving the tensor Sylvester equation with low-rank right-hand sides. To solve such equations, we first introduce a modified version of the block Hessenberg process so that approximation subspaces contain some extra block information obtained by multiplying the initial block by the inverse of each coefficient matrix of the tensor Sylvester equation. Then, we apply a Galerkin-like condition to transform the original tensor Sylvester equation into a low-dimensional tensor form. The reduced problem is then solved using a blocked recursive algorithm based on Schur decomposition. Moreover, we reveal how to stop the iterations without the need to compute the approximate solution by calculating the residual norm or an upper bound. Eventually, some numerical examples are given to assess the efficiency and robustness of the suggested method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified block Hessenberg method for low-rank tensor Sylvester equation\",\"authors\":\"Mahsa Bagheri,&nbsp;Faranges Kyanfar,&nbsp;Abbas Salemi,&nbsp;Azita Tajaddini\",\"doi\":\"10.1016/j.cam.2024.116209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work focuses on iteratively solving the tensor Sylvester equation with low-rank right-hand sides. To solve such equations, we first introduce a modified version of the block Hessenberg process so that approximation subspaces contain some extra block information obtained by multiplying the initial block by the inverse of each coefficient matrix of the tensor Sylvester equation. Then, we apply a Galerkin-like condition to transform the original tensor Sylvester equation into a low-dimensional tensor form. The reduced problem is then solved using a blocked recursive algorithm based on Schur decomposition. Moreover, we reveal how to stop the iterations without the need to compute the approximate solution by calculating the residual norm or an upper bound. Eventually, some numerical examples are given to assess the efficiency and robustness of the suggested method.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是迭代求解具有低阶右边的张量西尔维斯特方程。为了求解这类方程,我们首先引入了修正版的块海森伯过程,使逼近子空间包含一些额外的块信息,这些信息是通过将初始块乘以张量西尔维斯特方程每个系数矩阵的逆而获得的。然后,我们应用类似 Galerkin 的条件,将原始张量 Sylvester 方程转化为低维张量形式。然后,利用基于舒尔分解的阻塞递归算法来求解简化后的问题。此外,我们还揭示了如何停止迭代,而无需通过计算残差规范或上界来计算近似解。最后,我们给出了一些数值示例,以评估所建议方法的效率和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified block Hessenberg method for low-rank tensor Sylvester equation

This work focuses on iteratively solving the tensor Sylvester equation with low-rank right-hand sides. To solve such equations, we first introduce a modified version of the block Hessenberg process so that approximation subspaces contain some extra block information obtained by multiplying the initial block by the inverse of each coefficient matrix of the tensor Sylvester equation. Then, we apply a Galerkin-like condition to transform the original tensor Sylvester equation into a low-dimensional tensor form. The reduced problem is then solved using a blocked recursive algorithm based on Schur decomposition. Moreover, we reveal how to stop the iterations without the need to compute the approximate solution by calculating the residual norm or an upper bound. Eventually, some numerical examples are given to assess the efficiency and robustness of the suggested method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信