{"title":"渐进迭代勋伯格-马斯登变异递减算子及相关二次函数","authors":"Elena Fornaca, Paola Lamberti","doi":"10.1016/j.apnum.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose an approximation method based on the classical Schoenberg-Marsden variation diminishing operator with applications to the construction of new quadrature rules. We compare the new operator with the multilevel one studied in <span><span>[12]</span></span> in order to characterize both of them with respect to the well known classical one. We discuss convergence properties and present numerical experiments.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 269-282"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002101/pdfft?md5=6508653513a118f94937cbfd3c6e9f93&pid=1-s2.0-S0168927424002101-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progressive iterative Schoenberg-Marsden variation diminishing operator and related quadratures\",\"authors\":\"Elena Fornaca, Paola Lamberti\",\"doi\":\"10.1016/j.apnum.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we propose an approximation method based on the classical Schoenberg-Marsden variation diminishing operator with applications to the construction of new quadrature rules. We compare the new operator with the multilevel one studied in <span><span>[12]</span></span> in order to characterize both of them with respect to the well known classical one. We discuss convergence properties and present numerical experiments.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"206 \",\"pages\":\"Pages 269-282\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002101/pdfft?md5=6508653513a118f94937cbfd3c6e9f93&pid=1-s2.0-S0168927424002101-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002101\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Progressive iterative Schoenberg-Marsden variation diminishing operator and related quadratures
In this paper we propose an approximation method based on the classical Schoenberg-Marsden variation diminishing operator with applications to the construction of new quadrature rules. We compare the new operator with the multilevel one studied in [12] in order to characterize both of them with respect to the well known classical one. We discuss convergence properties and present numerical experiments.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.