自动生成网格的椭圆界面问题的任意高阶非拟合有限元法,第二部分。片状光滑界面

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Zhiming Chen, Yong Liu
{"title":"自动生成网格的椭圆界面问题的任意高阶非拟合有限元法,第二部分。片状光滑界面","authors":"Zhiming Chen,&nbsp;Yong Liu","doi":"10.1016/j.apnum.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the reliable implementation of an adaptive high-order unfitted finite element method on Cartesian meshes for solving elliptic interface problems with geometrically curved singularities. We extend our previous work on the reliable cell merging algorithm for smooth interfaces to automatically generate the induced mesh for piecewise smooth interfaces. An <em>hp</em> a posteriori error estimate is derived for a new unfitted finite element method whose finite element functions are conforming in each subdomain. Numerical examples illustrate the competitive performance of the method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 247-268"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation, Part II. Piecewise-smooth interfaces\",\"authors\":\"Zhiming Chen,&nbsp;Yong Liu\",\"doi\":\"10.1016/j.apnum.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the reliable implementation of an adaptive high-order unfitted finite element method on Cartesian meshes for solving elliptic interface problems with geometrically curved singularities. We extend our previous work on the reliable cell merging algorithm for smooth interfaces to automatically generate the induced mesh for piecewise smooth interfaces. An <em>hp</em> a posteriori error estimate is derived for a new unfitted finite element method whose finite element functions are conforming in each subdomain. Numerical examples illustrate the competitive performance of the method.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"206 \",\"pages\":\"Pages 247-268\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002083\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002083","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在笛卡尔网格上可靠地实施自适应高阶非拟合有限元方法,以解决具有几何弯曲奇点的椭圆界面问题。我们扩展了之前针对光滑界面的可靠单元合并算法的工作,以自动生成片状光滑界面的诱导网格。我们为一种新的非拟合有限元方法推导出了一个 hp 后验误差估计值,这种方法的有限元函数在每个子域中都是符合的。数值示例说明了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation, Part II. Piecewise-smooth interfaces

We consider the reliable implementation of an adaptive high-order unfitted finite element method on Cartesian meshes for solving elliptic interface problems with geometrically curved singularities. We extend our previous work on the reliable cell merging algorithm for smooth interfaces to automatically generate the induced mesh for piecewise smooth interfaces. An hp a posteriori error estimate is derived for a new unfitted finite element method whose finite element functions are conforming in each subdomain. Numerical examples illustrate the competitive performance of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信