随变量变化的时空协方差模型

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Yen-Shiu Chin , Nan-Jung Hsu , Hsin-Cheng Huang
{"title":"随变量变化的时空协方差模型","authors":"Yen-Shiu Chin ,&nbsp;Nan-Jung Hsu ,&nbsp;Hsin-Cheng Huang","doi":"10.1016/j.spasta.2024.100853","DOIUrl":null,"url":null,"abstract":"<div><p>Geostatistical regression models are widely used in environmental and geophysical sciences to characterize the mean and dependence structures for spatio-temporal data. Traditionally, these models account for covariates solely in the mean structure, neglecting their potential impact on the spatio-temporal covariance structure. This paper addresses a significant gap in the literature by proposing a novel covariate-dependent covariance model within the spatio-temporal random-effects model framework. Our approach integrates covariates into the covariance function through a Cholesky-type decomposition, ensuring compliance with the positive-definite condition. We employ maximum likelihood for parameter estimation, complemented by an efficient expectation conditional maximization algorithm. Simulation studies demonstrate the superior performance of our method compared to conventional techniques that ignore covariates in spatial covariances. We further apply our model to a PM<sub>2.5</sub> dataset from Taiwan, highlighting wind speed’s pivotal role in influencing the spatio-temporal covariance structure. Additionally, we incorporate wind speed and sunshine duration into the covariance function for analyzing Taiwan ozone data, revealing a more intricate relationship between covariance and these meteorological variables.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariate-dependent spatio-temporal covariance models\",\"authors\":\"Yen-Shiu Chin ,&nbsp;Nan-Jung Hsu ,&nbsp;Hsin-Cheng Huang\",\"doi\":\"10.1016/j.spasta.2024.100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geostatistical regression models are widely used in environmental and geophysical sciences to characterize the mean and dependence structures for spatio-temporal data. Traditionally, these models account for covariates solely in the mean structure, neglecting their potential impact on the spatio-temporal covariance structure. This paper addresses a significant gap in the literature by proposing a novel covariate-dependent covariance model within the spatio-temporal random-effects model framework. Our approach integrates covariates into the covariance function through a Cholesky-type decomposition, ensuring compliance with the positive-definite condition. We employ maximum likelihood for parameter estimation, complemented by an efficient expectation conditional maximization algorithm. Simulation studies demonstrate the superior performance of our method compared to conventional techniques that ignore covariates in spatial covariances. We further apply our model to a PM<sub>2.5</sub> dataset from Taiwan, highlighting wind speed’s pivotal role in influencing the spatio-temporal covariance structure. Additionally, we incorporate wind speed and sunshine duration into the covariance function for analyzing Taiwan ozone data, revealing a more intricate relationship between covariance and these meteorological variables.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000447\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地质统计回归模型广泛应用于环境和地球物理科学领域,用于描述时空数据的均值结构和依赖结构。传统上,这些模型只考虑均值结构中的协变量,而忽略了它们对时空协方差结构的潜在影响。本文在时空随机效应模型框架内提出了一种新的协变量依赖协方差模型,填补了文献中的一个重要空白。我们的方法通过 Cholesky 型分解将协变量整合到协方差函数中,确保符合正有限条件。我们采用最大似然法进行参数估计,并辅以高效的期望条件最大化算法。模拟研究表明,与忽略空间协方差的传统技术相比,我们的方法具有更优越的性能。我们进一步将模型应用于台湾的 PM2.5 数据集,突出了风速在影响时空协方差结构中的关键作用。此外,我们在分析台湾臭氧数据时将风速和日照时间纳入协方差函数,揭示了协方差与这些气象变量之间更为复杂的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariate-dependent spatio-temporal covariance models

Geostatistical regression models are widely used in environmental and geophysical sciences to characterize the mean and dependence structures for spatio-temporal data. Traditionally, these models account for covariates solely in the mean structure, neglecting their potential impact on the spatio-temporal covariance structure. This paper addresses a significant gap in the literature by proposing a novel covariate-dependent covariance model within the spatio-temporal random-effects model framework. Our approach integrates covariates into the covariance function through a Cholesky-type decomposition, ensuring compliance with the positive-definite condition. We employ maximum likelihood for parameter estimation, complemented by an efficient expectation conditional maximization algorithm. Simulation studies demonstrate the superior performance of our method compared to conventional techniques that ignore covariates in spatial covariances. We further apply our model to a PM2.5 dataset from Taiwan, highlighting wind speed’s pivotal role in influencing the spatio-temporal covariance structure. Additionally, we incorporate wind speed and sunshine duration into the covariance function for analyzing Taiwan ozone data, revealing a more intricate relationship between covariance and these meteorological variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信