Fujie Yang , Zihao Yang , Qiujie Huang , Pipi Wang , Chong Mao , Zhanqiang Li , Huiyang Li , Xudong Chen
{"title":"降冰片烯酸酐作为多功能添加剂可优化相间性,从而实现高性能镍钴锰酸锂电池","authors":"Fujie Yang , Zihao Yang , Qiujie Huang , Pipi Wang , Chong Mao , Zhanqiang Li , Huiyang Li , Xudong Chen","doi":"10.1016/j.nxmate.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing the electrode/electrolyte interface structure is the key to realizing high-energy-density Li-metal batteries (LMBs) with nickel-rich LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode. Herein, a versatile additive, norbornene dicarboxylic anhydride (NA), is dedicated to constructing robust interphase layers in NCM811ǁLi batteries. Theoretical calculations and experimental results show that NA induces the formation of thin and stable cathode-electrolyte interface (CEI) / solid-electrolyte interface (SEI) films at the electrodes’ surfaces. The NA-induced CEI film on the cathode effectively protects NCM811 and improves its structural stability during long-term cycling, thus avoiding the material rupture and the dissolution of transition metals. On the other hand, the SEI film on the anode also enhances the performances of interface between electrolyte and Li-metal anode. A LiǁLi symmetric cell with NA exhibits excellent cycling stability at a current density of 1.0 mA cm<sup>−2</sup> for cycling 400 h. Furthermore, the molecular dynamics simulations verify that NA additive influences the desolvation behavior of Li<sup>+</sup> and increases transport kinetics of Li<sup>+</sup> on the electrode/electrolyte interfaces. Therefore, the NCM 811ǁLi battery containing NA additive obtains a high capacity retention of 78.77 % after 200 cycles with a coulombic efficiency of 99.5 %.</p></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100354"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982282400251X/pdfft?md5=456d63a4fee13648779b85b90f2a05d3&pid=1-s2.0-S294982282400251X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Norbornenic anhydride as versatile additive optimizing interphases to enable high-performance LiNi0.8Co0.1Mn0.1O2/Li batteries\",\"authors\":\"Fujie Yang , Zihao Yang , Qiujie Huang , Pipi Wang , Chong Mao , Zhanqiang Li , Huiyang Li , Xudong Chen\",\"doi\":\"10.1016/j.nxmate.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing the electrode/electrolyte interface structure is the key to realizing high-energy-density Li-metal batteries (LMBs) with nickel-rich LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode. Herein, a versatile additive, norbornene dicarboxylic anhydride (NA), is dedicated to constructing robust interphase layers in NCM811ǁLi batteries. Theoretical calculations and experimental results show that NA induces the formation of thin and stable cathode-electrolyte interface (CEI) / solid-electrolyte interface (SEI) films at the electrodes’ surfaces. The NA-induced CEI film on the cathode effectively protects NCM811 and improves its structural stability during long-term cycling, thus avoiding the material rupture and the dissolution of transition metals. On the other hand, the SEI film on the anode also enhances the performances of interface between electrolyte and Li-metal anode. A LiǁLi symmetric cell with NA exhibits excellent cycling stability at a current density of 1.0 mA cm<sup>−2</sup> for cycling 400 h. Furthermore, the molecular dynamics simulations verify that NA additive influences the desolvation behavior of Li<sup>+</sup> and increases transport kinetics of Li<sup>+</sup> on the electrode/electrolyte interfaces. Therefore, the NCM 811ǁLi battery containing NA additive obtains a high capacity retention of 78.77 % after 200 cycles with a coulombic efficiency of 99.5 %.</p></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"7 \",\"pages\":\"Article 100354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294982282400251X/pdfft?md5=456d63a4fee13648779b85b90f2a05d3&pid=1-s2.0-S294982282400251X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294982282400251X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282400251X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
优化电极/电解质界面结构是实现富镍 LiNi0.8Co0.1Mn0.1O2(NCM811)阴极高能量密度锂金属电池(LMB)的关键。在本文中,一种多功能添加剂降冰片烯二羧酸酐(NA)专门用于在 NCM811ǁ锂电池中构建坚固的相间层。理论计算和实验结果表明,NA 能在电极表面诱导形成薄而稳定的阴极-电解质界面(CEI)/固体-电解质界面(SEI)薄膜。在长期循环过程中,NA 在阴极上形成的 CEI 膜可有效保护 NCM811 并提高其结构稳定性,从而避免材料断裂和过渡金属溶解。另一方面,阳极上的 SEI 膜也提高了电解液与锂金属阳极之间界面的性能。带有 NA 的锂离子对称电池在 1.0 mA cm-2 的电流密度下循环 400 小时,显示出卓越的循环稳定性。此外,分子动力学模拟验证了 NA 添加剂会影响 Li+ 的脱溶行为,并增加 Li+ 在电极/电解质界面上的传输动力学。因此,含有 NA 添加剂的 NCM 811ǁ锂电池在循环 200 次后可获得 78.77 % 的高容量保持率,库仑效率达到 99.5 %。
Norbornenic anhydride as versatile additive optimizing interphases to enable high-performance LiNi0.8Co0.1Mn0.1O2/Li batteries
Optimizing the electrode/electrolyte interface structure is the key to realizing high-energy-density Li-metal batteries (LMBs) with nickel-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. Herein, a versatile additive, norbornene dicarboxylic anhydride (NA), is dedicated to constructing robust interphase layers in NCM811ǁLi batteries. Theoretical calculations and experimental results show that NA induces the formation of thin and stable cathode-electrolyte interface (CEI) / solid-electrolyte interface (SEI) films at the electrodes’ surfaces. The NA-induced CEI film on the cathode effectively protects NCM811 and improves its structural stability during long-term cycling, thus avoiding the material rupture and the dissolution of transition metals. On the other hand, the SEI film on the anode also enhances the performances of interface between electrolyte and Li-metal anode. A LiǁLi symmetric cell with NA exhibits excellent cycling stability at a current density of 1.0 mA cm−2 for cycling 400 h. Furthermore, the molecular dynamics simulations verify that NA additive influences the desolvation behavior of Li+ and increases transport kinetics of Li+ on the electrode/electrolyte interfaces. Therefore, the NCM 811ǁLi battery containing NA additive obtains a high capacity retention of 78.77 % after 200 cycles with a coulombic efficiency of 99.5 %.