关于可平衡和简单可平衡正则图

IF 1 3区 数学 Q1 MATHEMATICS
Milad Ahanjideh , Martin Milanič , Mary Servatius
{"title":"关于可平衡和简单可平衡正则图","authors":"Milad Ahanjideh ,&nbsp;Martin Milanič ,&nbsp;Mary Servatius","doi":"10.1016/j.ejc.2024.104045","DOIUrl":null,"url":null,"abstract":"<div><p>We continue the study of balanceable graphs, defined by Caro, Hansberg, and Montejano in 2021 as graphs <span><math><mi>G</mi></math></span> such that any 2-coloring of the edges of a sufficiently large complete graph containing sufficiently many edges of each color contains a balanced copy of <span><math><mi>G</mi></math></span> (that is, a copy with half the edges of each color). While the problem of recognizing balanceable graphs was conjectured to be <span><math><mi>NP</mi></math></span>-complete by Dailly, Hansberg, and Ventura in 2021, balanceable graphs admit an elegant combinatorial characterization: a graph is balanceable if and only there exist two vertex subsets, one containing half of all the graph’s edges and another one such that the corresponding cut contains half of all the graph’s edges. We consider a special case of this property, namely when one of the two sets is a vertex cover, and call the corresponding graphs simply balanceable. We prove a number of results on balanceable and simply balanceable regular graphs. First, we characterize simply balanceable regular graphs via a condition involving the independence number of the graph. Second, we address a question of Dailly, Hansberg, and Ventura from 2021 and show that every cubic graph is balanceable. Third, using Brooks’ theorem, we show that every 4-regular graph with order divisible by 4 is balanceable. Finally, we show that it is <span><math><mi>NP</mi></math></span>-complete to determine if a 9-regular graph is simply balanceable.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104045"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001306/pdfft?md5=129ec5810b9eb2e86760507f0c3a96ba&pid=1-s2.0-S0195669824001306-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On balanceable and simply balanceable regular graphs\",\"authors\":\"Milad Ahanjideh ,&nbsp;Martin Milanič ,&nbsp;Mary Servatius\",\"doi\":\"10.1016/j.ejc.2024.104045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We continue the study of balanceable graphs, defined by Caro, Hansberg, and Montejano in 2021 as graphs <span><math><mi>G</mi></math></span> such that any 2-coloring of the edges of a sufficiently large complete graph containing sufficiently many edges of each color contains a balanced copy of <span><math><mi>G</mi></math></span> (that is, a copy with half the edges of each color). While the problem of recognizing balanceable graphs was conjectured to be <span><math><mi>NP</mi></math></span>-complete by Dailly, Hansberg, and Ventura in 2021, balanceable graphs admit an elegant combinatorial characterization: a graph is balanceable if and only there exist two vertex subsets, one containing half of all the graph’s edges and another one such that the corresponding cut contains half of all the graph’s edges. We consider a special case of this property, namely when one of the two sets is a vertex cover, and call the corresponding graphs simply balanceable. We prove a number of results on balanceable and simply balanceable regular graphs. First, we characterize simply balanceable regular graphs via a condition involving the independence number of the graph. Second, we address a question of Dailly, Hansberg, and Ventura from 2021 and show that every cubic graph is balanceable. Third, using Brooks’ theorem, we show that every 4-regular graph with order divisible by 4 is balanceable. Finally, we show that it is <span><math><mi>NP</mi></math></span>-complete to determine if a 9-regular graph is simply balanceable.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"124 \",\"pages\":\"Article 104045\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001306/pdfft?md5=129ec5810b9eb2e86760507f0c3a96ba&pid=1-s2.0-S0195669824001306-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将继续研究可平衡图,卡洛、汉斯伯格和蒙特哈诺在 2021 年将可平衡图定义为这样的图 G:在一个包含足够多每种颜色的边的足够大的完整图中,边的任何 2 次着色都包含 G 的一个平衡副本(即每个颜色的边各占一半的副本)。尽管戴利、汉斯伯格和文图拉在 2021 年猜想识别可平衡图的问题是 NP-complete,但可平衡图有一个优雅的组合特征:如果且仅如果存在两个顶点子集,其中一个子集包含该图所有边的一半,另一个子集的相应切割包含该图所有边的一半,则该图是可平衡的。我们考虑了这一属性的一种特殊情况,即当两个集合中的一个是顶点盖时,我们称相应的图为简单可平衡图。我们证明了一系列关于可平衡和简单可平衡正则图的结果。首先,我们通过一个涉及图的独立性数的条件来描述简单可平衡正则图。其次,我们解决了 Dailly、Hansberg 和 Ventura 在 2021 年提出的一个问题,并证明了每个立方图都是可平衡的。第三,利用布鲁克斯定理,我们证明了每个阶数能被 4 整除的 4 规则图都是可平衡的。最后,我们证明了确定一个 9 规则图是否简单可平衡是 NP-complete。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On balanceable and simply balanceable regular graphs

We continue the study of balanceable graphs, defined by Caro, Hansberg, and Montejano in 2021 as graphs G such that any 2-coloring of the edges of a sufficiently large complete graph containing sufficiently many edges of each color contains a balanced copy of G (that is, a copy with half the edges of each color). While the problem of recognizing balanceable graphs was conjectured to be NP-complete by Dailly, Hansberg, and Ventura in 2021, balanceable graphs admit an elegant combinatorial characterization: a graph is balanceable if and only there exist two vertex subsets, one containing half of all the graph’s edges and another one such that the corresponding cut contains half of all the graph’s edges. We consider a special case of this property, namely when one of the two sets is a vertex cover, and call the corresponding graphs simply balanceable. We prove a number of results on balanceable and simply balanceable regular graphs. First, we characterize simply balanceable regular graphs via a condition involving the independence number of the graph. Second, we address a question of Dailly, Hansberg, and Ventura from 2021 and show that every cubic graph is balanceable. Third, using Brooks’ theorem, we show that every 4-regular graph with order divisible by 4 is balanceable. Finally, we show that it is NP-complete to determine if a 9-regular graph is simply balanceable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信