由冬小麦不同糖代谢介导的小穗发育对寒冷和冷冻胁迫的响应调控

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES
Hui Su , Zhengxin Wang , Xinrui Li , Jinpeng Li , Yulei Zhu , Ashley Jones , Youhong Song
{"title":"由冬小麦不同糖代谢介导的小穗发育对寒冷和冷冻胁迫的响应调控","authors":"Hui Su ,&nbsp;Zhengxin Wang ,&nbsp;Xinrui Li ,&nbsp;Jinpeng Li ,&nbsp;Yulei Zhu ,&nbsp;Ashley Jones ,&nbsp;Youhong Song","doi":"10.1016/j.envexpbot.2024.105936","DOIUrl":null,"url":null,"abstract":"<div><p>Spring cold stress poses a great threat to wheat reproductive growth, leading to compromised spike development and grain yield. There are two types of cold stress i.e. chilling stress (CS, above zero) and freezing stress (FS, below zero). However, it is unclear whether there is a difference in the mechanism of CS and FS in regulating spikelet development. This study aimed to unravel the underlying regulation in determining the difference for wheat spikelet exposed to CS at 2 °C and FS at −2°C by integrative analyses of transcriptome, metabolome, and physiology. Delayed floret development and shrunken cellular morphology in both CS and FS were observed, even malformation and degradation of anther cells occurred in FS. Kyoto Encyclopedia of gene and genomes (KEGG) analyses revealed that the most abundantly enriched pathways are phytohormone biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Further physiological assays related to the identified pathways were performed. Compared to CS, the signal of abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) was more pronounced, and the signal of auxin (IAA) and gibberellin (GA) was inhibited further in FS. In addition, the contents of glucose, fructose and trehalose were elevated in CS, owing to greater activities of cell wall invertase and sucrose synthase, while the hexose content was decreased owing to lower activities of such enzymes in FS, concomitantly, flavonoid barely changed in CS, but it dramatically amounted in FS. Taken together, the glucose and trehalose pathway, along with induced ABA and SA signal were intensified in CS to maintain growth, while greater flavonoid and promoted JA synthesis were induced in FS for cold survival. Understanding the molecular of growth-defense under cold stress would provide a foundation for the development of breeding strategies.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of spikelet developmental responses to chilling and freezing stress mediated by differential sugar metabolism in winter wheat\",\"authors\":\"Hui Su ,&nbsp;Zhengxin Wang ,&nbsp;Xinrui Li ,&nbsp;Jinpeng Li ,&nbsp;Yulei Zhu ,&nbsp;Ashley Jones ,&nbsp;Youhong Song\",\"doi\":\"10.1016/j.envexpbot.2024.105936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spring cold stress poses a great threat to wheat reproductive growth, leading to compromised spike development and grain yield. There are two types of cold stress i.e. chilling stress (CS, above zero) and freezing stress (FS, below zero). However, it is unclear whether there is a difference in the mechanism of CS and FS in regulating spikelet development. This study aimed to unravel the underlying regulation in determining the difference for wheat spikelet exposed to CS at 2 °C and FS at −2°C by integrative analyses of transcriptome, metabolome, and physiology. Delayed floret development and shrunken cellular morphology in both CS and FS were observed, even malformation and degradation of anther cells occurred in FS. Kyoto Encyclopedia of gene and genomes (KEGG) analyses revealed that the most abundantly enriched pathways are phytohormone biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Further physiological assays related to the identified pathways were performed. Compared to CS, the signal of abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) was more pronounced, and the signal of auxin (IAA) and gibberellin (GA) was inhibited further in FS. In addition, the contents of glucose, fructose and trehalose were elevated in CS, owing to greater activities of cell wall invertase and sucrose synthase, while the hexose content was decreased owing to lower activities of such enzymes in FS, concomitantly, flavonoid barely changed in CS, but it dramatically amounted in FS. Taken together, the glucose and trehalose pathway, along with induced ABA and SA signal were intensified in CS to maintain growth, while greater flavonoid and promoted JA synthesis were induced in FS for cold survival. Understanding the molecular of growth-defense under cold stress would provide a foundation for the development of breeding strategies.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224002946\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224002946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

春季寒冷胁迫对小麦的生殖生长构成巨大威胁,会影响穗的发育和谷物产量。冷胁迫有两种类型,即寒冷胁迫(CS,零度以上)和冰冻胁迫(FS,零度以下)。然而,目前还不清楚 CS 和 FS 在调节小穗发育方面的机制是否存在差异。本研究旨在通过对转录组、代谢组和生理学的综合分析,揭示决定小麦穗在2 °C的CS和-2 °C的FS下发育差异的潜在调控机制。结果表明,CS和FS均导致小花发育延迟和细胞形态萎缩,FS甚至导致花药细胞畸形和退化。京都基因和基因组百科全书(KEGG)分析表明,富集最多的途径是植物激素生物合成、淀粉和蔗糖代谢以及苯丙类生物合成。对已确定的途径进行了进一步的生理检测。与 CS 相比,FS 中脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)的信号更为明显,而辅助素(IAA)和赤霉素(GA)的信号则进一步受到抑制。此外,在 CS 中,由于细胞壁转化酶和蔗糖合成酶活性较高,葡萄糖、果糖和三卤糖的含量升高;而在 FS 中,由于这些酶的活性较低,己糖的含量降低。综上所述,CS中葡萄糖和三卤糖途径以及诱导的ABA和SA信号被强化以维持生长,而FS中则诱导了更多的类黄酮并促进了JA的合成以维持低温生存。了解冷胁迫下生长防御的分子机制将为制定育种策略奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of spikelet developmental responses to chilling and freezing stress mediated by differential sugar metabolism in winter wheat

Spring cold stress poses a great threat to wheat reproductive growth, leading to compromised spike development and grain yield. There are two types of cold stress i.e. chilling stress (CS, above zero) and freezing stress (FS, below zero). However, it is unclear whether there is a difference in the mechanism of CS and FS in regulating spikelet development. This study aimed to unravel the underlying regulation in determining the difference for wheat spikelet exposed to CS at 2 °C and FS at −2°C by integrative analyses of transcriptome, metabolome, and physiology. Delayed floret development and shrunken cellular morphology in both CS and FS were observed, even malformation and degradation of anther cells occurred in FS. Kyoto Encyclopedia of gene and genomes (KEGG) analyses revealed that the most abundantly enriched pathways are phytohormone biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Further physiological assays related to the identified pathways were performed. Compared to CS, the signal of abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) was more pronounced, and the signal of auxin (IAA) and gibberellin (GA) was inhibited further in FS. In addition, the contents of glucose, fructose and trehalose were elevated in CS, owing to greater activities of cell wall invertase and sucrose synthase, while the hexose content was decreased owing to lower activities of such enzymes in FS, concomitantly, flavonoid barely changed in CS, but it dramatically amounted in FS. Taken together, the glucose and trehalose pathway, along with induced ABA and SA signal were intensified in CS to maintain growth, while greater flavonoid and promoted JA synthesis were induced in FS for cold survival. Understanding the molecular of growth-defense under cold stress would provide a foundation for the development of breeding strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信