开发一种固体食品模拟物,以评估纸和纸板食品接触材料中的化学物质向潮湿食品的迁移情况

IF 8.5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
{"title":"开发一种固体食品模拟物,以评估纸和纸板食品接触材料中的化学物质向潮湿食品的迁移情况","authors":"","doi":"10.1016/j.fpsl.2024.101340","DOIUrl":null,"url":null,"abstract":"<div><p>Food contact materials (FCMs) i.e. materials that food is packaged or handled in, must be safe for their intended use. European FCM legislation uses a risk-based approach, with a cornerstone of FCM’s safety evaluation being measurement of migration of substances from FCMs to food simulants. The standard methods mainly developed for plastic FCMs are not always suitable for less inert and moisture sensitive materials such as paper and board. However, these are becoming increasingly common as FCMs e.g. to replace single-use plastics. In addition, there is a drive to further use recycled materials. To support this development, new methods for assessing the safety of these materials are needed. In the present feasibility study, a hydrogel crosslinked through freeze-thawing of poly(vinyl alcohol) was evaluated as a food simulant for moist foods. The migration of surrogate compounds from a spiked paperboard to the hydrogel was determined and compared to the migration to a real moist food (a slice of apple), the commonly used modified polyphenylene oxide (MPPO) and a water extract. Migration of polar surrogates to the hydrogel correlated well with the migration to the apple slice. However, our results indicate that the hydrogel is less suitable as simulant for non-polar surrogates. Overall, the study demonstrates the potential of this hydrogel-based simulant for improving risk assessment of less inert FCMs.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214289424001054/pdfft?md5=981849cc0aecf49d3066040b6ae1fdaf&pid=1-s2.0-S2214289424001054-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a solid food simulant to evaluate migration of chemicals from paper and board food contact materials to moist food\",\"authors\":\"\",\"doi\":\"10.1016/j.fpsl.2024.101340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Food contact materials (FCMs) i.e. materials that food is packaged or handled in, must be safe for their intended use. European FCM legislation uses a risk-based approach, with a cornerstone of FCM’s safety evaluation being measurement of migration of substances from FCMs to food simulants. The standard methods mainly developed for plastic FCMs are not always suitable for less inert and moisture sensitive materials such as paper and board. However, these are becoming increasingly common as FCMs e.g. to replace single-use plastics. In addition, there is a drive to further use recycled materials. To support this development, new methods for assessing the safety of these materials are needed. In the present feasibility study, a hydrogel crosslinked through freeze-thawing of poly(vinyl alcohol) was evaluated as a food simulant for moist foods. The migration of surrogate compounds from a spiked paperboard to the hydrogel was determined and compared to the migration to a real moist food (a slice of apple), the commonly used modified polyphenylene oxide (MPPO) and a water extract. Migration of polar surrogates to the hydrogel correlated well with the migration to the apple slice. However, our results indicate that the hydrogel is less suitable as simulant for non-polar surrogates. Overall, the study demonstrates the potential of this hydrogel-based simulant for improving risk assessment of less inert FCMs.</p></div>\",\"PeriodicalId\":12377,\"journal\":{\"name\":\"Food Packaging and Shelf Life\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214289424001054/pdfft?md5=981849cc0aecf49d3066040b6ae1fdaf&pid=1-s2.0-S2214289424001054-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Packaging and Shelf Life\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214289424001054\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001054","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食品接触材料(FCM),即包装或处理食品的材料,必须保证其预期用途的安全性。欧洲食品接触材料立法采用基于风险的方法,食品接触材料安全评估的基础是测量从食品接触材料到食品模拟物的物质迁移。主要针对塑料含氟聚合物开发的标准方法并不总是适用于纸张和纸板等惰性和湿度敏感性较低的材料。不过,这些材料正日益成为食品添加剂,例如用于替代一次性塑料。此外,还有进一步使用回收材料的趋势。为了支持这一发展,需要新的方法来评估这些材料的安全性。在本可行性研究中,对通过冻融聚乙烯醇交联的水凝胶作为潮湿食品的食品模拟物进行了评估。研究测定了代用化合物从加标纸板向水凝胶的迁移,并将其与向真实潮湿食品(一片苹果)、常用的改性聚苯醚(MPPO)和水提取物的迁移进行了比较。极性代用品向水凝胶的迁移与向苹果片的迁移有很好的相关性。不过,我们的研究结果表明,水凝胶不太适合作为非极性代用品的模拟物。总之,这项研究证明了这种基于水凝胶的模拟物在改善惰性较低的食品添加剂风险评估方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a solid food simulant to evaluate migration of chemicals from paper and board food contact materials to moist food

Food contact materials (FCMs) i.e. materials that food is packaged or handled in, must be safe for their intended use. European FCM legislation uses a risk-based approach, with a cornerstone of FCM’s safety evaluation being measurement of migration of substances from FCMs to food simulants. The standard methods mainly developed for plastic FCMs are not always suitable for less inert and moisture sensitive materials such as paper and board. However, these are becoming increasingly common as FCMs e.g. to replace single-use plastics. In addition, there is a drive to further use recycled materials. To support this development, new methods for assessing the safety of these materials are needed. In the present feasibility study, a hydrogel crosslinked through freeze-thawing of poly(vinyl alcohol) was evaluated as a food simulant for moist foods. The migration of surrogate compounds from a spiked paperboard to the hydrogel was determined and compared to the migration to a real moist food (a slice of apple), the commonly used modified polyphenylene oxide (MPPO) and a water extract. Migration of polar surrogates to the hydrogel correlated well with the migration to the apple slice. However, our results indicate that the hydrogel is less suitable as simulant for non-polar surrogates. Overall, the study demonstrates the potential of this hydrogel-based simulant for improving risk assessment of less inert FCMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Packaging and Shelf Life
Food Packaging and Shelf Life Agricultural and Biological Sciences-Food Science
CiteScore
14.00
自引率
8.80%
发文量
214
审稿时长
70 days
期刊介绍: Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信