Ashley L. Harkins , Prajakta P. Ambegaokar , Allison M. Keeler
{"title":"中枢神经系统定向腺相关病毒基因疗法的免疫反应:直接向中枢神经系统递送是否会产生影响?","authors":"Ashley L. Harkins , Prajakta P. Ambegaokar , Allison M. Keeler","doi":"10.1016/j.neurot.2024.e00435","DOIUrl":null,"url":null,"abstract":"<div><p>Adeno-associated virus (AAV) mediated gene therapy is a leading gene delivery platform with potential to transform the landscape of treatment for neurological disorders. While AAV is deemed non-immunogenic compared to other viral vectors, adverse immune reactions have been observed in the clinic, raising concerns. As the central nervous system (CNS) has a tightly regulated immune system, characterized by a degree of tolerance, it has been considered a unique target for AAV gene therapy. AAV vectors have shown promising results for the treatment of several CNS disorders including Spinal Muscular Atrophy, Giant Axonal Neuropathy, Amyotrophic Lateral Sclerosis, Tay Sachs Disease, Parkinson's Disease, and others, demonstrating safety and success. The Food and Drug Administration (FDA) approval of Zolgensma and European Medicines Agency (EMA) approval of Upstaza, for Spinal Muscular Atrophy (SMA) and Aromatic <span>l</span>-amino acid decarboxylase deficiency (AADC) respectively, represent this success, all while highlighting significant differences in immune responses to AAV, particularly with regards to therapeutic administration route. AAV therapies like Upstaza that are injected directly into the immune-specialized brain have been characterized by mild immune response profiles and minor adverse events, whereas therapies like Zolgensma that are injected systemically demonstrate more robust immune stimulation and off-target toxicities. Despite these contrasting parallels, these therapeutics and others in the clinic have demonstrated clinical benefit for patients, warranting further exploration of immune responses to CNS-directed AAV clinical trials. Thus, in this review, we discuss effects of different routes of AAV administration on eliciting local and peripheral immune responses specifically observed in CNS-targeted trials.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924001211/pdfft?md5=b4ab2a6edee35de43bb985ec09d50c68&pid=1-s2.0-S1878747924001211-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Immune responses to central nervous system directed adeno-associated virus gene therapy: Does direct CNS delivery make a difference?\",\"authors\":\"Ashley L. Harkins , Prajakta P. Ambegaokar , Allison M. Keeler\",\"doi\":\"10.1016/j.neurot.2024.e00435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adeno-associated virus (AAV) mediated gene therapy is a leading gene delivery platform with potential to transform the landscape of treatment for neurological disorders. While AAV is deemed non-immunogenic compared to other viral vectors, adverse immune reactions have been observed in the clinic, raising concerns. As the central nervous system (CNS) has a tightly regulated immune system, characterized by a degree of tolerance, it has been considered a unique target for AAV gene therapy. AAV vectors have shown promising results for the treatment of several CNS disorders including Spinal Muscular Atrophy, Giant Axonal Neuropathy, Amyotrophic Lateral Sclerosis, Tay Sachs Disease, Parkinson's Disease, and others, demonstrating safety and success. The Food and Drug Administration (FDA) approval of Zolgensma and European Medicines Agency (EMA) approval of Upstaza, for Spinal Muscular Atrophy (SMA) and Aromatic <span>l</span>-amino acid decarboxylase deficiency (AADC) respectively, represent this success, all while highlighting significant differences in immune responses to AAV, particularly with regards to therapeutic administration route. AAV therapies like Upstaza that are injected directly into the immune-specialized brain have been characterized by mild immune response profiles and minor adverse events, whereas therapies like Zolgensma that are injected systemically demonstrate more robust immune stimulation and off-target toxicities. Despite these contrasting parallels, these therapeutics and others in the clinic have demonstrated clinical benefit for patients, warranting further exploration of immune responses to CNS-directed AAV clinical trials. Thus, in this review, we discuss effects of different routes of AAV administration on eliciting local and peripheral immune responses specifically observed in CNS-targeted trials.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878747924001211/pdfft?md5=b4ab2a6edee35de43bb985ec09d50c68&pid=1-s2.0-S1878747924001211-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878747924001211\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001211","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Immune responses to central nervous system directed adeno-associated virus gene therapy: Does direct CNS delivery make a difference?
Adeno-associated virus (AAV) mediated gene therapy is a leading gene delivery platform with potential to transform the landscape of treatment for neurological disorders. While AAV is deemed non-immunogenic compared to other viral vectors, adverse immune reactions have been observed in the clinic, raising concerns. As the central nervous system (CNS) has a tightly regulated immune system, characterized by a degree of tolerance, it has been considered a unique target for AAV gene therapy. AAV vectors have shown promising results for the treatment of several CNS disorders including Spinal Muscular Atrophy, Giant Axonal Neuropathy, Amyotrophic Lateral Sclerosis, Tay Sachs Disease, Parkinson's Disease, and others, demonstrating safety and success. The Food and Drug Administration (FDA) approval of Zolgensma and European Medicines Agency (EMA) approval of Upstaza, for Spinal Muscular Atrophy (SMA) and Aromatic l-amino acid decarboxylase deficiency (AADC) respectively, represent this success, all while highlighting significant differences in immune responses to AAV, particularly with regards to therapeutic administration route. AAV therapies like Upstaza that are injected directly into the immune-specialized brain have been characterized by mild immune response profiles and minor adverse events, whereas therapies like Zolgensma that are injected systemically demonstrate more robust immune stimulation and off-target toxicities. Despite these contrasting parallels, these therapeutics and others in the clinic have demonstrated clinical benefit for patients, warranting further exploration of immune responses to CNS-directed AAV clinical trials. Thus, in this review, we discuss effects of different routes of AAV administration on eliciting local and peripheral immune responses specifically observed in CNS-targeted trials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.