{"title":"多源子域负转移抑制和多伪标签引导对齐:交叉工作条件下的故障诊断方法。","authors":"Xing Chen, Hua Yin, Qitong Chen, Liang Chen, Changqing Shen","doi":"10.1016/j.isatra.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive researches have been conducted on transfer learning based fault diagnosis. However, negative information transfer may arise due to significant differences in the subdomain distribution across multiple source domains (MSDs). Most existing methods focus solely on the impact of subdomains from a single source domain (SSD) on the target domain (TD). Therefore, this paper proposed a novel multi-stage alignment multi-source subdomain adaptation (MAMSA) method. The global feature extractor is designed to extract domain-invariant features. Three domain-specific feature extractors capture high-level fault features from different domains with a customized adaptation strategy, which combines adversarial learning and distribution alignment based on multiple pseudo-label-guided local maximum mean discrepancy (MP-LMMD) to learn subdomain-invariant features. MP-LMMD utilizes pseudo-labels generated from all classifiers in the TD to guide the alignment of subdomains, suppressing negative transfer from the source domains (SDs). The experimental results indicate that the MAMSA method has excellent capabilities to suppress negative transfer, and the diagnostic performance can be greatly promoted with MAMSA under cross-working conditions.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"154 ","pages":"Pages 389-406"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-source subdomain negative transfer suppression and multiple pseudo-labels guidance alignment: A method for fault diagnosis under cross-working conditions\",\"authors\":\"Xing Chen, Hua Yin, Qitong Chen, Liang Chen, Changqing Shen\",\"doi\":\"10.1016/j.isatra.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensive researches have been conducted on transfer learning based fault diagnosis. However, negative information transfer may arise due to significant differences in the subdomain distribution across multiple source domains (MSDs). Most existing methods focus solely on the impact of subdomains from a single source domain (SSD) on the target domain (TD). Therefore, this paper proposed a novel multi-stage alignment multi-source subdomain adaptation (MAMSA) method. The global feature extractor is designed to extract domain-invariant features. Three domain-specific feature extractors capture high-level fault features from different domains with a customized adaptation strategy, which combines adversarial learning and distribution alignment based on multiple pseudo-label-guided local maximum mean discrepancy (MP-LMMD) to learn subdomain-invariant features. MP-LMMD utilizes pseudo-labels generated from all classifiers in the TD to guide the alignment of subdomains, suppressing negative transfer from the source domains (SDs). The experimental results indicate that the MAMSA method has excellent capabilities to suppress negative transfer, and the diagnostic performance can be greatly promoted with MAMSA under cross-working conditions.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"154 \",\"pages\":\"Pages 389-406\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003847\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003847","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multi-source subdomain negative transfer suppression and multiple pseudo-labels guidance alignment: A method for fault diagnosis under cross-working conditions
Extensive researches have been conducted on transfer learning based fault diagnosis. However, negative information transfer may arise due to significant differences in the subdomain distribution across multiple source domains (MSDs). Most existing methods focus solely on the impact of subdomains from a single source domain (SSD) on the target domain (TD). Therefore, this paper proposed a novel multi-stage alignment multi-source subdomain adaptation (MAMSA) method. The global feature extractor is designed to extract domain-invariant features. Three domain-specific feature extractors capture high-level fault features from different domains with a customized adaptation strategy, which combines adversarial learning and distribution alignment based on multiple pseudo-label-guided local maximum mean discrepancy (MP-LMMD) to learn subdomain-invariant features. MP-LMMD utilizes pseudo-labels generated from all classifiers in the TD to guide the alignment of subdomains, suppressing negative transfer from the source domains (SDs). The experimental results indicate that the MAMSA method has excellent capabilities to suppress negative transfer, and the diagnostic performance can be greatly promoted with MAMSA under cross-working conditions.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.