J S Benites-Pariente, I Samolski, Y Ludeña, G K Villena
{"title":"CRISPR/Cas9 介导的定向敲入 eglA 基因以提高烟曲霉 LMB-35Aa 的内切葡聚糖酶活性。","authors":"J S Benites-Pariente, I Samolski, Y Ludeña, G K Villena","doi":"10.1038/s41598-024-70397-4","DOIUrl":null,"url":null,"abstract":"<p><p>Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"19661"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344075/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa.\",\"authors\":\"J S Benites-Pariente, I Samolski, Y Ludeña, G K Villena\",\"doi\":\"10.1038/s41598-024-70397-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"19661\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344075/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-70397-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-70397-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa.
Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.