基于功能化金属有机框架探针的铜离子和氨基酸探针的构建与应用。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Xinyi Liu, Dilong Hong, Qian Zhang, Yuliang Jiang
{"title":"基于功能化金属有机框架探针的铜离子和氨基酸探针的构建与应用。","authors":"Xinyi Liu, Dilong Hong, Qian Zhang, Yuliang Jiang","doi":"10.1007/s10895-024-03908-1","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of fluorescence probe technology has promoted in-depth research in fields such as environment and life medicine. Traditional single channel fluorescent probes can achieve highly sensitive detection of targets, but they appear powerless in complex environments. In addition, in today's deteriorating resource environment, implementing multi target detection with one probe can effectively save preparation resources, which is in line with the development direction of fluorescent probes. To achieve this goal, designing and preparing multi-site probes is undoubtedly the first choice, but the complexity of their preparation is daunting. Herein, we propose the concept of cascade detection for the first time. After the probe completes the first target detection, the complex between the probe and the first target is achieved based on the characteristics of the first target to achieve subsequent target detection. Based on this, a metal-organic framework was used as a basic skeleton and the concept of serial reactions was applied. First, copper ions were detected through coordination. Then, the specificity of copper for sulfur-containing amino acids was utilized to detect the three types of amino acids, and the practical applications of the three probes were studied separately.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and Application of Copper Ion and Amino Acid Probe Based on Functionalized Metal-Organic Framework Probe.\",\"authors\":\"Xinyi Liu, Dilong Hong, Qian Zhang, Yuliang Jiang\",\"doi\":\"10.1007/s10895-024-03908-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid development of fluorescence probe technology has promoted in-depth research in fields such as environment and life medicine. Traditional single channel fluorescent probes can achieve highly sensitive detection of targets, but they appear powerless in complex environments. In addition, in today's deteriorating resource environment, implementing multi target detection with one probe can effectively save preparation resources, which is in line with the development direction of fluorescent probes. To achieve this goal, designing and preparing multi-site probes is undoubtedly the first choice, but the complexity of their preparation is daunting. Herein, we propose the concept of cascade detection for the first time. After the probe completes the first target detection, the complex between the probe and the first target is achieved based on the characteristics of the first target to achieve subsequent target detection. Based on this, a metal-organic framework was used as a basic skeleton and the concept of serial reactions was applied. First, copper ions were detected through coordination. Then, the specificity of copper for sulfur-containing amino acids was utilized to detect the three types of amino acids, and the practical applications of the three probes were studied separately.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03908-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03908-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

荧光探针技术的快速发展推动了环境和生命医学等领域的深入研究。传统的单通道荧光探针可以实现高灵敏度的目标检测,但在复杂环境下显得力不从心。此外,在资源环境日益恶化的今天,用一个探针实现多目标检测可以有效节约制备资源,这也符合荧光探针的发展方向。要实现这一目标,设计和制备多位点探针无疑是首选,但其制备的复杂性却令人望而生畏。在此,我们首次提出了级联检测的概念。探针完成第一个目标的探测后,根据第一个目标的特征实现探针与第一个目标之间的复合,从而实现后续目标的探测。在此基础上,以金属有机框架为基本骨架,应用串联反应的概念。首先,通过配位检测铜离子。然后,利用铜对含硫氨基酸的特异性检测三种氨基酸,并分别研究了三种探针的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction and Application of Copper Ion and Amino Acid Probe Based on Functionalized Metal-Organic Framework Probe.

Construction and Application of Copper Ion and Amino Acid Probe Based on Functionalized Metal-Organic Framework Probe.

The rapid development of fluorescence probe technology has promoted in-depth research in fields such as environment and life medicine. Traditional single channel fluorescent probes can achieve highly sensitive detection of targets, but they appear powerless in complex environments. In addition, in today's deteriorating resource environment, implementing multi target detection with one probe can effectively save preparation resources, which is in line with the development direction of fluorescent probes. To achieve this goal, designing and preparing multi-site probes is undoubtedly the first choice, but the complexity of their preparation is daunting. Herein, we propose the concept of cascade detection for the first time. After the probe completes the first target detection, the complex between the probe and the first target is achieved based on the characteristics of the first target to achieve subsequent target detection. Based on this, a metal-organic framework was used as a basic skeleton and the concept of serial reactions was applied. First, copper ions were detected through coordination. Then, the specificity of copper for sulfur-containing amino acids was utilized to detect the three types of amino acids, and the practical applications of the three probes were studied separately.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信