利用甘蓝叶提取物绿色合成用于光催化孔雀石绿染料的纳米钙铁。

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
P Raji, K Balachandra Kumar
{"title":"利用甘蓝叶提取物绿色合成用于光催化孔雀石绿染料的纳米钙铁。","authors":"P Raji, K Balachandra Kumar","doi":"10.1080/15226514.2024.2390188","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium ferrite nanoparticles were made by the sol-gel process. X-ray diffraction, a scanning electron microscope, and UV-vis spectroscopy were used to analyze the material. There is an orthorhombic phase in the space group <i>Pnma</i>. There were four techniques used to calculate the average crystallite size. Using ImageJ software, the particles were aggregated and their size was ascertained. Using energy-dispersive X-ray (EDX) analysis, the composition of the material was ascertained. 2.29 eV was determined to be the band gap. Vibrating test magnetometer (VSM) provided an explanation for the materials' magnetic property. A decreased band gap energy is responsible for the 90% degradation of malachite green dye at a concentration of 15 mg/L in 150 min, with a four-cycle reusability.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of calcium nanoferrites using leaf extract of <i>Brassica oleracea</i> for photocatalysis of malachite green dye.\",\"authors\":\"P Raji, K Balachandra Kumar\",\"doi\":\"10.1080/15226514.2024.2390188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The calcium ferrite nanoparticles were made by the sol-gel process. X-ray diffraction, a scanning electron microscope, and UV-vis spectroscopy were used to analyze the material. There is an orthorhombic phase in the space group <i>Pnma</i>. There were four techniques used to calculate the average crystallite size. Using ImageJ software, the particles were aggregated and their size was ascertained. Using energy-dispersive X-ray (EDX) analysis, the composition of the material was ascertained. 2.29 eV was determined to be the band gap. Vibrating test magnetometer (VSM) provided an explanation for the materials' magnetic property. A decreased band gap energy is responsible for the 90% degradation of malachite green dye at a concentration of 15 mg/L in 150 min, with a four-cycle reusability.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2390188\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2390188","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

钙铁氧体纳米粒子是通过溶胶-凝胶工艺制成的。分析材料时使用了 X 射线衍射、扫描电子显微镜和紫外可见光谱。在空间群 Pnma 中存在正交相。计算平均晶粒大小使用了四种技术。使用 ImageJ 软件聚集颗粒并确定其大小。利用能量色散 X 射线(EDX)分析确定了材料的成分。2.29 eV 被确定为带隙。振动测试磁力计(VSM)为材料的磁性提供了解释。当孔雀石绿染料的浓度为 15 毫克/升时,带隙能降低是其在 150 分钟内降解 90% 的原因,并且可重复使用四次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green synthesis of calcium nanoferrites using leaf extract of Brassica oleracea for photocatalysis of malachite green dye.

The calcium ferrite nanoparticles were made by the sol-gel process. X-ray diffraction, a scanning electron microscope, and UV-vis spectroscopy were used to analyze the material. There is an orthorhombic phase in the space group Pnma. There were four techniques used to calculate the average crystallite size. Using ImageJ software, the particles were aggregated and their size was ascertained. Using energy-dispersive X-ray (EDX) analysis, the composition of the material was ascertained. 2.29 eV was determined to be the band gap. Vibrating test magnetometer (VSM) provided an explanation for the materials' magnetic property. A decreased band gap energy is responsible for the 90% degradation of malachite green dye at a concentration of 15 mg/L in 150 min, with a four-cycle reusability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信