Leif R Neitzel, Daniela T Fuller, Charles H Williams, Charles C Hong
{"title":"在斑马鱼异种移植模型中,抑制 GPR68 可杀死胶质母细胞瘤。","authors":"Leif R Neitzel, Daniela T Fuller, Charles H Williams, Charles C Hong","doi":"10.1186/s13104-024-06900-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown.</p><p><strong>Results: </strong>In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342492/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of GPR68 kills glioblastoma in zebrafish xenograft models.\",\"authors\":\"Leif R Neitzel, Daniela T Fuller, Charles H Williams, Charles C Hong\",\"doi\":\"10.1186/s13104-024-06900-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown.</p><p><strong>Results: </strong>In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.</p>\",\"PeriodicalId\":9234,\"journal\":{\"name\":\"BMC Research Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342492/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Research Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13104-024-06900-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-06900-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Inhibition of GPR68 kills glioblastoma in zebrafish xenograft models.
Objective: Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown.
Results: In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.