城市路面沉积氮的特征:对雨水径流污染控制的影响。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-11-20 Epub Date: 2024-08-22 DOI:10.1016/j.scitotenv.2024.175692
Zilin Yang, Yushan Chen, Jiawei Dong, Nian Hong, Qian Tan
{"title":"城市路面沉积氮的特征:对雨水径流污染控制的影响。","authors":"Zilin Yang, Yushan Chen, Jiawei Dong, Nian Hong, Qian Tan","doi":"10.1016/j.scitotenv.2024.175692","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen (N) is one of the most important pollutants on urban road surfaces. Understanding the N deposition forms, load characteristics, and influential factors can help to provide management and control strategies for road stormwater runoff pollution. This study focuses on a highly urbanized area in Guangzhou, China, and presents the characteristics of both dissolved and particulate N deposition forms as well as their correlations with land-use types and traffic factors. In addition, an artificial neural network (ANN) based classification model is utilized to estimate N pollution hotspot area and total nitrogen (TN) flux from road to receiving water bodies. The results showed that N on urban road surfaces mainly existed in the form of particulate organic nitrogen. Land use types dominated by residential area (RA) and urban village (UV) have higher TN build-up loads. Geodetector analysis indicated that land use has a greater impact on nitrogen build-up loads than traffic factors. Through classification and estimation using the ANN model, RA, and UV were classified as hotspot areas, and the TN flux from roads in the study area was calculated to be 3.35 × 10<sup>5</sup> g. Furthermore, it was estimated that the annual TN flux from roads in Guangzhou accounts for 19 % of the city's total urban domestic discharge. These findings are expected to contribute to the pollution control of stormwater runoff from urban road surfaces and provide valuable guidance for enhancing the ecological health of urban water environments.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing nitrogen deposited on urban road surfaces: Implication for stormwater runoff pollution control.\",\"authors\":\"Zilin Yang, Yushan Chen, Jiawei Dong, Nian Hong, Qian Tan\",\"doi\":\"10.1016/j.scitotenv.2024.175692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen (N) is one of the most important pollutants on urban road surfaces. Understanding the N deposition forms, load characteristics, and influential factors can help to provide management and control strategies for road stormwater runoff pollution. This study focuses on a highly urbanized area in Guangzhou, China, and presents the characteristics of both dissolved and particulate N deposition forms as well as their correlations with land-use types and traffic factors. In addition, an artificial neural network (ANN) based classification model is utilized to estimate N pollution hotspot area and total nitrogen (TN) flux from road to receiving water bodies. The results showed that N on urban road surfaces mainly existed in the form of particulate organic nitrogen. Land use types dominated by residential area (RA) and urban village (UV) have higher TN build-up loads. Geodetector analysis indicated that land use has a greater impact on nitrogen build-up loads than traffic factors. Through classification and estimation using the ANN model, RA, and UV were classified as hotspot areas, and the TN flux from roads in the study area was calculated to be 3.35 × 10<sup>5</sup> g. Furthermore, it was estimated that the annual TN flux from roads in Guangzhou accounts for 19 % of the city's total urban domestic discharge. These findings are expected to contribute to the pollution control of stormwater runoff from urban road surfaces and provide valuable guidance for enhancing the ecological health of urban water environments.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175692\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175692","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氮(N)是城市道路表面最重要的污染物之一。了解氮的沉积形式、负荷特征和影响因素,有助于为道路雨水径流污染提供管理和控制策略。本研究以中国广州的一个高度城市化地区为研究对象,介绍了溶解氮和颗粒氮沉积形式的特征及其与土地利用类型和交通因素的相关性。此外,还利用基于人工神经网络(ANN)的分类模型估算了氮污染热点区域以及从道路到受纳水体的总氮(TN)通量。结果表明,城市道路路面上的氮主要以颗粒有机氮的形式存在。以住宅区(RA)和城中村(UV)为主的土地利用类型具有较高的 TN 累积负荷。地质探测器分析表明,土地利用对氮累积负荷的影响大于交通因素。通过使用 ANN 模型进行分类和估算,将 RA 和 UV 划分为热点区域,并计算出研究区域内来自道路的 TN 通量为 3.35 × 105 g。此外,据估计,广州市每年来自道路的 TN 通量占全市城市生活污水排放总量的 19%。这些研究结果有望为城市道路路面雨水径流的污染控制作出贡献,并为提高城市水环境的生态健康水平提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing nitrogen deposited on urban road surfaces: Implication for stormwater runoff pollution control.

Nitrogen (N) is one of the most important pollutants on urban road surfaces. Understanding the N deposition forms, load characteristics, and influential factors can help to provide management and control strategies for road stormwater runoff pollution. This study focuses on a highly urbanized area in Guangzhou, China, and presents the characteristics of both dissolved and particulate N deposition forms as well as their correlations with land-use types and traffic factors. In addition, an artificial neural network (ANN) based classification model is utilized to estimate N pollution hotspot area and total nitrogen (TN) flux from road to receiving water bodies. The results showed that N on urban road surfaces mainly existed in the form of particulate organic nitrogen. Land use types dominated by residential area (RA) and urban village (UV) have higher TN build-up loads. Geodetector analysis indicated that land use has a greater impact on nitrogen build-up loads than traffic factors. Through classification and estimation using the ANN model, RA, and UV were classified as hotspot areas, and the TN flux from roads in the study area was calculated to be 3.35 × 105 g. Furthermore, it was estimated that the annual TN flux from roads in Guangzhou accounts for 19 % of the city's total urban domestic discharge. These findings are expected to contribute to the pollution control of stormwater runoff from urban road surfaces and provide valuable guidance for enhancing the ecological health of urban water environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信