Mohamed Farghali, Zhonghao Chen, Ahmed I. Osman, Israa M. Ali, Dalia Hassan, Ikko Ihara, David W. Rooney, Pow-Seng Yap
{"title":"从废水中回收氨的策略:综述","authors":"Mohamed Farghali, Zhonghao Chen, Ahmed I. Osman, Israa M. Ali, Dalia Hassan, Ikko Ihara, David W. Rooney, Pow-Seng Yap","doi":"10.1007/s10311-024-01768-6","DOIUrl":null,"url":null,"abstract":"<div><p>The circular economy requires advanced methods to recycle waste matter such as ammonia, which can be further used as a fuel and a precursor of numerous value-added chemicals. Here, we review methods for the recovery of ammonia from wastewater with emphasis on biological and physicochemical techniques, and their applications. Biological techniques involve nitrification, denitrification, and anammox processes and the use of membrane bioreactors. Physicochemical techniques comprise adsorption, membrane filtration, ion exchange, chemical precipitation, ammonia stripping, electrochemical oxidation, photocatalytic oxidation, bioelectrochemical systems, and membrane hybrid systems. We found that nitrification and anammox processes in membrane bioreactors stand out for their cost-effectiveness, reduced sludge production, and energy efficiency. The use of struvite precipitation is an efficient, environmentally friendly, and recyclable method for ammonia removal. Membrane hybrid systems are promising for ammonia recovery, nutrient concentration, and wastewater treatment, with applications in fertilizer production and water purification. Overall, nitrogen removal ranges from 28 to 100%, and nitrogen recovery ranges from 9 to 100%.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 6","pages":"2699 - 2751"},"PeriodicalIF":15.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01768-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Strategies for ammonia recovery from wastewater: a review\",\"authors\":\"Mohamed Farghali, Zhonghao Chen, Ahmed I. Osman, Israa M. Ali, Dalia Hassan, Ikko Ihara, David W. Rooney, Pow-Seng Yap\",\"doi\":\"10.1007/s10311-024-01768-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The circular economy requires advanced methods to recycle waste matter such as ammonia, which can be further used as a fuel and a precursor of numerous value-added chemicals. Here, we review methods for the recovery of ammonia from wastewater with emphasis on biological and physicochemical techniques, and their applications. Biological techniques involve nitrification, denitrification, and anammox processes and the use of membrane bioreactors. Physicochemical techniques comprise adsorption, membrane filtration, ion exchange, chemical precipitation, ammonia stripping, electrochemical oxidation, photocatalytic oxidation, bioelectrochemical systems, and membrane hybrid systems. We found that nitrification and anammox processes in membrane bioreactors stand out for their cost-effectiveness, reduced sludge production, and energy efficiency. The use of struvite precipitation is an efficient, environmentally friendly, and recyclable method for ammonia removal. Membrane hybrid systems are promising for ammonia recovery, nutrient concentration, and wastewater treatment, with applications in fertilizer production and water purification. Overall, nitrogen removal ranges from 28 to 100%, and nitrogen recovery ranges from 9 to 100%.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 6\",\"pages\":\"2699 - 2751\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10311-024-01768-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01768-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01768-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategies for ammonia recovery from wastewater: a review
The circular economy requires advanced methods to recycle waste matter such as ammonia, which can be further used as a fuel and a precursor of numerous value-added chemicals. Here, we review methods for the recovery of ammonia from wastewater with emphasis on biological and physicochemical techniques, and their applications. Biological techniques involve nitrification, denitrification, and anammox processes and the use of membrane bioreactors. Physicochemical techniques comprise adsorption, membrane filtration, ion exchange, chemical precipitation, ammonia stripping, electrochemical oxidation, photocatalytic oxidation, bioelectrochemical systems, and membrane hybrid systems. We found that nitrification and anammox processes in membrane bioreactors stand out for their cost-effectiveness, reduced sludge production, and energy efficiency. The use of struvite precipitation is an efficient, environmentally friendly, and recyclable method for ammonia removal. Membrane hybrid systems are promising for ammonia recovery, nutrient concentration, and wastewater treatment, with applications in fertilizer production and water purification. Overall, nitrogen removal ranges from 28 to 100%, and nitrogen recovery ranges from 9 to 100%.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.