{"title":"加权斯坦豪斯随机乘法函数的几乎确定边界","authors":"Seth Hardy","doi":"10.1112/jlms.12979","DOIUrl":null,"url":null,"abstract":"<p>We obtain almost sure bounds for the weighted sum <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>t</mi>\n </mrow>\n </msub>\n <mfrac>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mfrac>\n </mrow>\n <annotation>$\\sum _{n \\leqslant t} \\frac{f(n)}{\\sqrt {n}}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(n)$</annotation>\n </semantics></math> is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12979","citationCount":"0","resultStr":"{\"title\":\"Almost sure bounds for a weighted Steinhaus random multiplicative function\",\"authors\":\"Seth Hardy\",\"doi\":\"10.1112/jlms.12979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain almost sure bounds for the weighted sum <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>∑</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mfrac>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\sum _{n \\\\leqslant t} \\\\frac{f(n)}{\\\\sqrt {n}}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(n)$</annotation>\\n </semantics></math> is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12979\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12979\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12979","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们得到了加权和 ∑ n ⩽ t f ( n ) n $\sum _{n \leqslant t} 的几乎确定的边界。\其中 f ( n ) $f(n)$ 是一个斯坦豪斯随机乘法函数。具体来说,我们通过迭代对数的指数化法则得到了预测的边界,给出了尖锐的上下限。
Almost sure bounds for a weighted Steinhaus random multiplicative function
We obtain almost sure bounds for the weighted sum , where is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.