Saghar Sarshar, Kobra Gharali, Meghdad Saffaripour, Jatin Nathwani, Maurice B. Dusseault
{"title":"多钻孔地热交换系统的多目标优化和长时间模拟","authors":"Saghar Sarshar, Kobra Gharali, Meghdad Saffaripour, Jatin Nathwani, Maurice B. Dusseault","doi":"10.1186/s40517-024-00310-9","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-objective optimization and CFD simulation are conducted to optimize the design of a multi-borehole ground heat exchanger (GHE) system and assess its long-time performance. The multi-objective optimization is performed to minimize the entropy generation number (EGN) and total cost rate by using various evolutionary algorithms, including NSGA-II, GDE-3, MOEA/D, PESA-II, SPEA-II, and SMPSO. NSGA-II and GDE-3 algorithms perform best in obtaining Pareto optimal solutions. Three prominent points on the NSGA-II Pareto frontier, representing the results of single-objective thermodynamic, single-objective economic, and multi-objective optimizations, are simulated in three dimensions over three months. The trends of EGN variations extracted from the transient CFD simulation agree well with those from the steady analytical model. The EGN obtained from multi-objective optimization is 58.8% lower than the EGN obtained using single-objective economic optimization and 1.9 times higher than that calculated from single-objective thermodynamic optimization. Likewise, the total cost rate obtained from multi-objective optimization is 64.4% lower than the value obtained from single-objective thermodynamic optimization and four times higher than that calculated using single-objective economic optimization. The proposed optimization approach can be reliably applied to improve the design of multi-borehole GHE systems.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00310-9","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization and long-time simulation of a multi-borehole ground heat exchanger system\",\"authors\":\"Saghar Sarshar, Kobra Gharali, Meghdad Saffaripour, Jatin Nathwani, Maurice B. Dusseault\",\"doi\":\"10.1186/s40517-024-00310-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-objective optimization and CFD simulation are conducted to optimize the design of a multi-borehole ground heat exchanger (GHE) system and assess its long-time performance. The multi-objective optimization is performed to minimize the entropy generation number (EGN) and total cost rate by using various evolutionary algorithms, including NSGA-II, GDE-3, MOEA/D, PESA-II, SPEA-II, and SMPSO. NSGA-II and GDE-3 algorithms perform best in obtaining Pareto optimal solutions. Three prominent points on the NSGA-II Pareto frontier, representing the results of single-objective thermodynamic, single-objective economic, and multi-objective optimizations, are simulated in three dimensions over three months. The trends of EGN variations extracted from the transient CFD simulation agree well with those from the steady analytical model. The EGN obtained from multi-objective optimization is 58.8% lower than the EGN obtained using single-objective economic optimization and 1.9 times higher than that calculated from single-objective thermodynamic optimization. Likewise, the total cost rate obtained from multi-objective optimization is 64.4% lower than the value obtained from single-objective thermodynamic optimization and four times higher than that calculated using single-objective economic optimization. The proposed optimization approach can be reliably applied to improve the design of multi-borehole GHE systems.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00310-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00310-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00310-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multi-objective optimization and long-time simulation of a multi-borehole ground heat exchanger system
Multi-objective optimization and CFD simulation are conducted to optimize the design of a multi-borehole ground heat exchanger (GHE) system and assess its long-time performance. The multi-objective optimization is performed to minimize the entropy generation number (EGN) and total cost rate by using various evolutionary algorithms, including NSGA-II, GDE-3, MOEA/D, PESA-II, SPEA-II, and SMPSO. NSGA-II and GDE-3 algorithms perform best in obtaining Pareto optimal solutions. Three prominent points on the NSGA-II Pareto frontier, representing the results of single-objective thermodynamic, single-objective economic, and multi-objective optimizations, are simulated in three dimensions over three months. The trends of EGN variations extracted from the transient CFD simulation agree well with those from the steady analytical model. The EGN obtained from multi-objective optimization is 58.8% lower than the EGN obtained using single-objective economic optimization and 1.9 times higher than that calculated from single-objective thermodynamic optimization. Likewise, the total cost rate obtained from multi-objective optimization is 64.4% lower than the value obtained from single-objective thermodynamic optimization and four times higher than that calculated using single-objective economic optimization. The proposed optimization approach can be reliably applied to improve the design of multi-borehole GHE systems.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.