Cahn-Hilliard-Biot 系统弱解的存在性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Helmut Abels, Harald Garcke, Jonas Haselböck
{"title":"Cahn-Hilliard-Biot 系统弱解的存在性","authors":"Helmut Abels,&nbsp;Harald Garcke,&nbsp;Jonas Haselböck","doi":"10.1016/j.nonrwa.2024.104194","DOIUrl":null,"url":null,"abstract":"<div><p>We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001330/pdfft?md5=19f83d3860f7c26cb3847128235f7d3f&pid=1-s2.0-S1468121824001330-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Existence of weak solutions to a Cahn–Hilliard–Biot system\",\"authors\":\"Helmut Abels,&nbsp;Harald Garcke,&nbsp;Jonas Haselböck\",\"doi\":\"10.1016/j.nonrwa.2024.104194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001330/pdfft?md5=19f83d3860f7c26cb3847128235f7d3f&pid=1-s2.0-S1468121824001330-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001330\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了描述流体流经由两相组成的可变形多孔介质的扩散界面模型的弱解存在性。该系统非线性地将包含相场相关材料特性的 Biot 孔弹性方程与用于模拟固体演变的 Cahn-Hilliard 方程耦合,并通过 Kelvin-Voigt 类型的粘弹性正则化进一步增强。为了得到这一结果,我们分两步对问题进行了近似处理,首先采用了半加尔金(semi-Galerkin)方差分析来证明正则化系统弱解的存在性,随后通过紧凑性论证对其进行了极限穿越。值得注意的是,我们还建立了线性粘弹性问题的最大正则性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of weak solutions to a Cahn–Hilliard–Biot system

We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信