Katie Gates , Jonathan Sandoval-Castillo , Andrea Barceló , Andrea Bertram , Eleanor A.L. Pratt , Peter R. Teske , Luciana Möller , Luciano B. Beheregaray
{"title":"连接点:在海洋公园网络规划中应用多物种连通性","authors":"Katie Gates , Jonathan Sandoval-Castillo , Andrea Barceló , Andrea Bertram , Eleanor A.L. Pratt , Peter R. Teske , Luciana Möller , Luciano B. Beheregaray","doi":"10.1016/j.biocon.2024.110759","DOIUrl":null,"url":null,"abstract":"<div><p>Marine ecosystems are highly dynamic, and their connectivity is affected by a complex range of biological, spatial, and oceanographic factors. Incorporating connectivity as a factor in the planning and management of marine protected areas (MPAs) is important yet challenging. Here, we implemented a novel integrative framework that uses intraspecific genetic and genomic data for multiple marine species to characterise connectivity across a recently established South Australian MPA network. We generated connectivity networks, estimated cross-species concordance of connectivity patterns, and tested the impact of key spatial and oceanographic factors on each species. Connectivity patterns varied markedly among species, but were most correlated among those with similar dispersal strategies. Ordination analyses revealed significant associations with both waterway distances and oceanographic advection models. Notably, waterway distances provided better predictive power in all-species combined analyses. We extended the practical relevance of our findings by employing spatial prioritisation with Marxan, using node values derived from both genetic and geographic connectivity networks. This allowed the identification of several priority areas for conservation, and substantiated the initial decision to employ spatial distance as a proxy for biological connectivity for the design of the South Australian marine park network. Our study establishes a baseline for connectivity monitoring in South Australian MPAs, and provides guidelines for adapting this framework to protected networks elsewhere in the world.</p></div>","PeriodicalId":55375,"journal":{"name":"Biological Conservation","volume":"298 ","pages":"Article 110759"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0006320724003215/pdfft?md5=82c7e56ddf353d25d38815a253b645ed&pid=1-s2.0-S0006320724003215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Connecting the dots: Applying multispecies connectivity in marine park network planning\",\"authors\":\"Katie Gates , Jonathan Sandoval-Castillo , Andrea Barceló , Andrea Bertram , Eleanor A.L. Pratt , Peter R. Teske , Luciana Möller , Luciano B. Beheregaray\",\"doi\":\"10.1016/j.biocon.2024.110759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine ecosystems are highly dynamic, and their connectivity is affected by a complex range of biological, spatial, and oceanographic factors. Incorporating connectivity as a factor in the planning and management of marine protected areas (MPAs) is important yet challenging. Here, we implemented a novel integrative framework that uses intraspecific genetic and genomic data for multiple marine species to characterise connectivity across a recently established South Australian MPA network. We generated connectivity networks, estimated cross-species concordance of connectivity patterns, and tested the impact of key spatial and oceanographic factors on each species. Connectivity patterns varied markedly among species, but were most correlated among those with similar dispersal strategies. Ordination analyses revealed significant associations with both waterway distances and oceanographic advection models. Notably, waterway distances provided better predictive power in all-species combined analyses. We extended the practical relevance of our findings by employing spatial prioritisation with Marxan, using node values derived from both genetic and geographic connectivity networks. This allowed the identification of several priority areas for conservation, and substantiated the initial decision to employ spatial distance as a proxy for biological connectivity for the design of the South Australian marine park network. Our study establishes a baseline for connectivity monitoring in South Australian MPAs, and provides guidelines for adapting this framework to protected networks elsewhere in the world.</p></div>\",\"PeriodicalId\":55375,\"journal\":{\"name\":\"Biological Conservation\",\"volume\":\"298 \",\"pages\":\"Article 110759\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0006320724003215/pdfft?md5=82c7e56ddf353d25d38815a253b645ed&pid=1-s2.0-S0006320724003215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006320724003215\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006320724003215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Connecting the dots: Applying multispecies connectivity in marine park network planning
Marine ecosystems are highly dynamic, and their connectivity is affected by a complex range of biological, spatial, and oceanographic factors. Incorporating connectivity as a factor in the planning and management of marine protected areas (MPAs) is important yet challenging. Here, we implemented a novel integrative framework that uses intraspecific genetic and genomic data for multiple marine species to characterise connectivity across a recently established South Australian MPA network. We generated connectivity networks, estimated cross-species concordance of connectivity patterns, and tested the impact of key spatial and oceanographic factors on each species. Connectivity patterns varied markedly among species, but were most correlated among those with similar dispersal strategies. Ordination analyses revealed significant associations with both waterway distances and oceanographic advection models. Notably, waterway distances provided better predictive power in all-species combined analyses. We extended the practical relevance of our findings by employing spatial prioritisation with Marxan, using node values derived from both genetic and geographic connectivity networks. This allowed the identification of several priority areas for conservation, and substantiated the initial decision to employ spatial distance as a proxy for biological connectivity for the design of the South Australian marine park network. Our study establishes a baseline for connectivity monitoring in South Australian MPAs, and provides guidelines for adapting this framework to protected networks elsewhere in the world.
期刊介绍:
Biological Conservation is an international leading journal in the discipline of conservation biology. The journal publishes articles spanning a diverse range of fields that contribute to the biological, sociological, and economic dimensions of conservation and natural resource management. The primary aim of Biological Conservation is the publication of high-quality papers that advance the science and practice of conservation, or which demonstrate the application of conservation principles for natural resource management and policy. Therefore it will be of interest to a broad international readership.