{"title":"木质纤维素簕杜鹃催化转化为生物乙醇的新型实验方法","authors":"Souvik Kumar Paul , Amar Jyoti Das","doi":"10.1016/j.crmicr.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><p><em>Bambusa bambos (B.B) biomass</em> is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of <em>B.B</em> biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of <em>B.B</em> using CuCl<sub>2</sub> was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"7 ","pages":"Article 100267"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400049X/pdfft?md5=d4c5a7abac98289760a4b9b0efead185&pid=1-s2.0-S266651742400049X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel experimental approach for the catalytic conversion of lignocellulosic Bambusa bambos to bioethanol\",\"authors\":\"Souvik Kumar Paul , Amar Jyoti Das\",\"doi\":\"10.1016/j.crmicr.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Bambusa bambos (B.B) biomass</em> is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of <em>B.B</em> biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of <em>B.B</em> using CuCl<sub>2</sub> was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.</p></div>\",\"PeriodicalId\":34305,\"journal\":{\"name\":\"Current Research in Microbial Sciences\",\"volume\":\"7 \",\"pages\":\"Article 100267\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266651742400049X/pdfft?md5=d4c5a7abac98289760a4b9b0efead185&pid=1-s2.0-S266651742400049X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Microbial Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266651742400049X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266651742400049X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A novel experimental approach for the catalytic conversion of lignocellulosic Bambusa bambos to bioethanol
Bambusa bambos (B.B) biomass is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of B.B biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of B.B using CuCl2 was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.