弱化的官能团活性使凝胶电解质分布均匀,从而实现了锂离子电池的高性能

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Jiaoli Wang , Maohui Bai , Mengran Wang , Bo Hong , Yexiang Liu
{"title":"弱化的官能团活性使凝胶电解质分布均匀,从而实现了锂离子电池的高性能","authors":"Jiaoli Wang ,&nbsp;Maohui Bai ,&nbsp;Mengran Wang ,&nbsp;Bo Hong ,&nbsp;Yexiang Liu","doi":"10.1016/j.ssi.2024.116659","DOIUrl":null,"url":null,"abstract":"<div><p>Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH<sub>3</sub>) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH<sub>3</sub> functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116659"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakened functional group activity enables the uniform distribution of the gel electrolyte to achieve the high-performance of Li-ion batteries\",\"authors\":\"Jiaoli Wang ,&nbsp;Maohui Bai ,&nbsp;Mengran Wang ,&nbsp;Bo Hong ,&nbsp;Yexiang Liu\",\"doi\":\"10.1016/j.ssi.2024.116659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH<sub>3</sub>) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH<sub>3</sub> functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"415 \",\"pages\":\"Article 116659\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002078\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002078","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电解质凝胶化被认为是解决液态电解质安全问题的主要途径之一。然而,凝胶聚合物电解质(GPE)在电极表面的分布及其对电池性能的影响机制仍是未知数。本文以含甲基(-CH3)的甲基丙烯酸甲酯(MMA)和含氰化物(-CN)的 2-氰基丙烯酸甲酯(MCA)为代表性单体,探讨凝胶分布与电池性能之间的关系。由于 PMCA 凝胶具有更强的电子吸收特性,因此其链长更短,收缩率更大,电极表面会出现许多裂缝,而 PMMA 凝胶则能均匀地覆盖电极表面。因此,使用 PMMA 的 1.4 Ah NCM811/Gr 袋装电池在 25 °C 下循环 500 次的容量保持率为 93.5%,在 60 °C 下循环 600 次的容量保持率为 91.5%,而使用 PMCA 的电池在 25 °C 下循环 266 次的容量保持率为 58.8%,在 60 °C 下循环 327 次的容量保持率为 69.1%。对电极片循环前后的 XPS 分析表明,PMCA 电极有大量的零价锂元素析出,而 PMMA 电极的界面膜更为稳定。该研究表明,在电极表面均匀分布带有-CH3官能团的凝胶电解质可以改善NCM811/Gr电池的电化学性能,具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakened functional group activity enables the uniform distribution of the gel electrolyte to achieve the high-performance of Li-ion batteries

Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH3) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH3 functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信